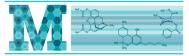
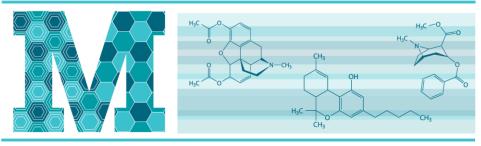
I. Setting the stage

Aparna Keshaviah

Mathematica Policy Research





The Potential of Wastewater Testing for Public Health and Safety

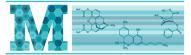
Can Wastewater Testing Improve Public Health and Well-Being?

Wastewater Symposium Washington, DC

May 16, 2017

Aparna Keshaviah, Sc.M.

Thanks...



Substance Abuse and the Opioid Epidemic

4

Scope of the Opioid Epidemic

Number and age-adjusted rates of drug overdose deaths by state, US 2015

• 2015: 33,000+

Rural & Urban

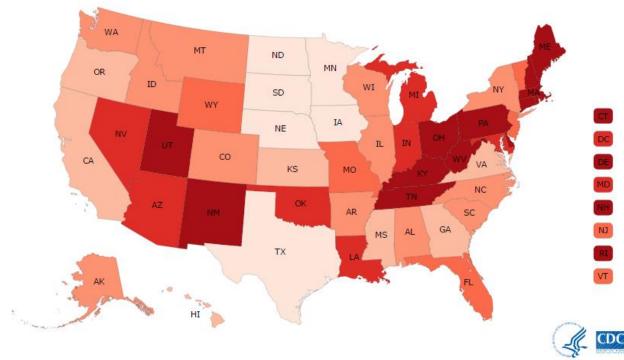
Increases in nearly

Prescription use

every U.S. county

differs: recreational vs workplace injury

OD deaths

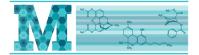


2015 Age-adjusted rate

 2.8 to 11.0
 16.1 to 18.5

 11.1 to 13.5
 18.6 to 21.0

 13.6 to 16.0
 21.0 to 41.5



Complexities of Studying Drug Use

<u>Policy Ex. 1</u> Legalize marijuana		Shift in drug production: marijuana to heroin
<u>Policy Ex. 2</u> Curb over- prescribing		Shift in affordability: prescriptions to heroin
		Increased transmission of HIV, Hepatitis C from injecting drugs

6

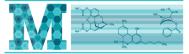
Complexities of Studying Drug Use

MULTIPLE STAKEHOLDERS

CO state legislature (amendment 64) Local marijuana distributors, wholesalers Illicit growers, transporters, security Sinaloa cartel Border patrol

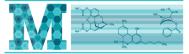
Policy Ex. 2 Curb overprescribing

FL Governor (bill HB 7095) FL prescribing physicians FL pharmacies (online) WV Drug users WV (Huntington) police

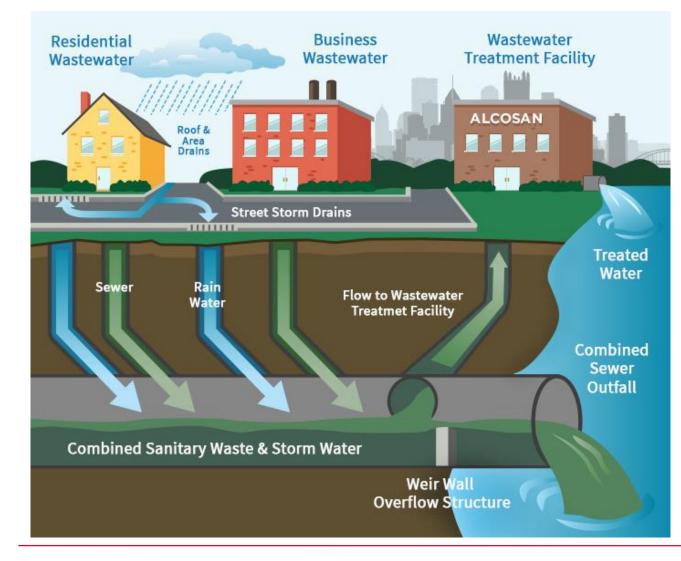


<u>Policy Ex. 1</u> Legalize marijuana

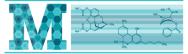
Wastewater: A 'New' Data Source



Overview of Wastewater Testing



- Mandatory sampling
- Routine testing for (90+ contaminants)
- Identity-blind data



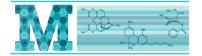
Benefits & Barriers

Benefit

- Near real-time information
- Fairly comprehensive coverage
 - 81% of U.S. households
- Standardized infrastructure to study program impacts
- Unbiased reporting versus:
 - <u>Surveys</u>: Non-response, underreporting
 - Medical data: Requires medical visit
 - <u>Crime data</u>: Vary by resource allocation
- Enables study of emerging substances & interactive effects

Barrier

- Lack of awareness
- Methods not fully developed
 - detection limits
 - non-routing testing for drugs
- Calibration needed
 - Sewer designs & operation
 - Rainfall amounts
 - Population changes (events/tourism)
- Cross-agency coordination (who oversees? who pays?)



Potential Uses of Wastewater

Snapshots: Understand what drugs are being used

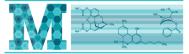
Identify emerging substances

Trends: Calculate rates of change in use over time – Test effectiveness of a new program or policy

Hotspots: Identify geographic concentrations of use

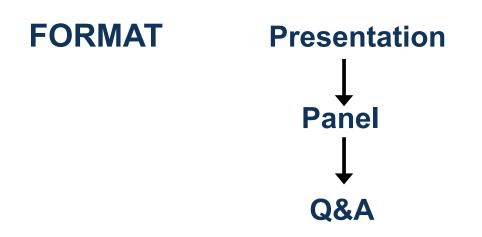
Useful for resource allocation

Pair with other sources synergistically

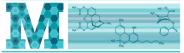


Symposium Overview

TOPICS Wastewater + Public health/safety needs (methods) + (applications)



OUTPUTAlignment in needs across domains
Cross-cutting goals, shared purposes



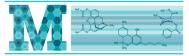
For More Information

- Aparna Keshaviah
 - <u>AKeshaviah@mathematica-mpr.com</u>

II. Information gaps that inhibit effective policy development

Terry Zobeck

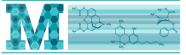
Office of National Drug Control Policy



II. Information gaps that inhibit effective policy development

Chris Jones

Office of the Assistant Secretary for Planning and Evaluation



The Opioid Epidemic:

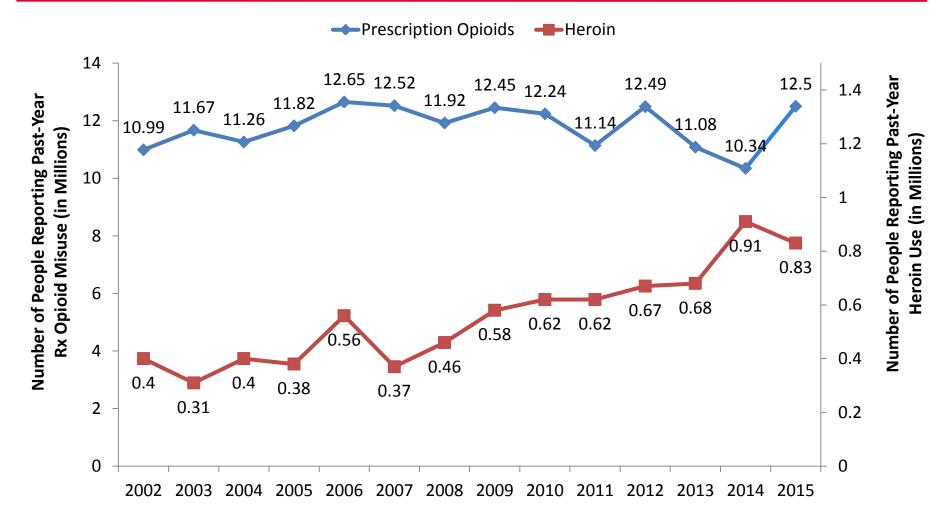
Epidemiology and Surveillance

Wastewater Symposium Washington, DC

May 16, 2017

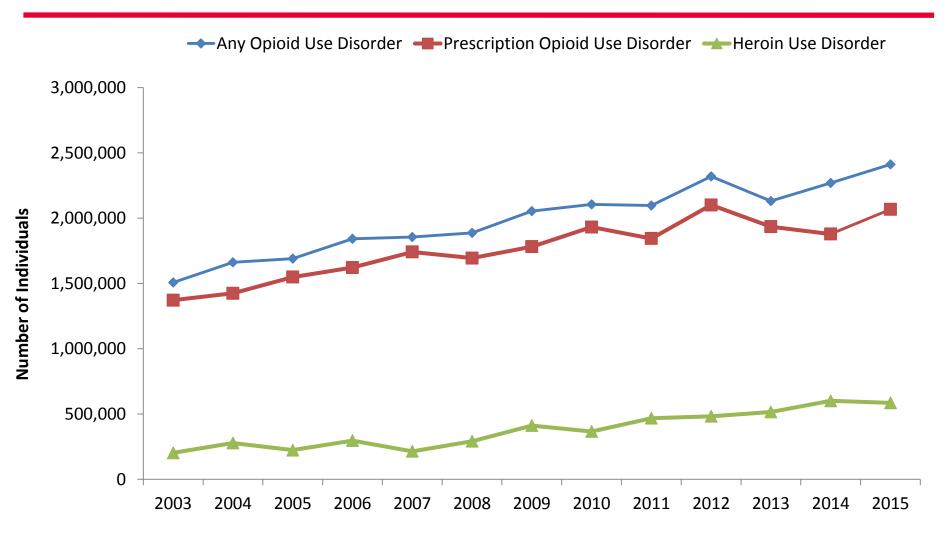
Christopher M. Jones, Pharm.D., M.P.H. Acting Associate Deputy Assistant Secretary, Science and Data Policy Office of the Assistant Secretary for Planning and Evaluation U.S. Department of Health and Human Services (HHS)

Trends in Past-Year Misuse of Rx Opioids and Heroin Use



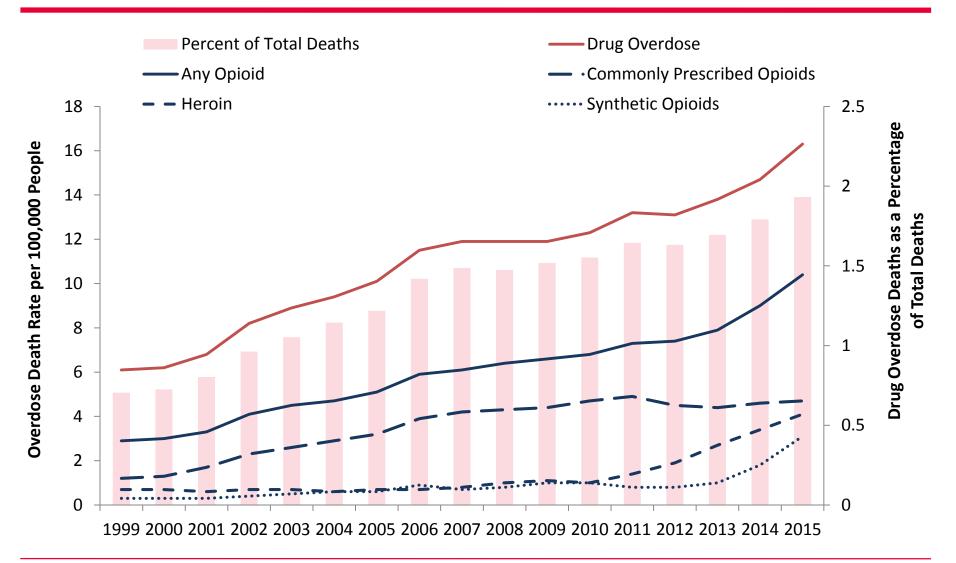
Source: Substance Abuse and Mental Health Services Administration's National Survey on Drug Use and Health (NSDUH) 2002–2015.

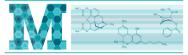
Trends in Opioid Use Disorder



Source: Jones, C.M., analysis of the NSDUH 2002–2015, PUF.

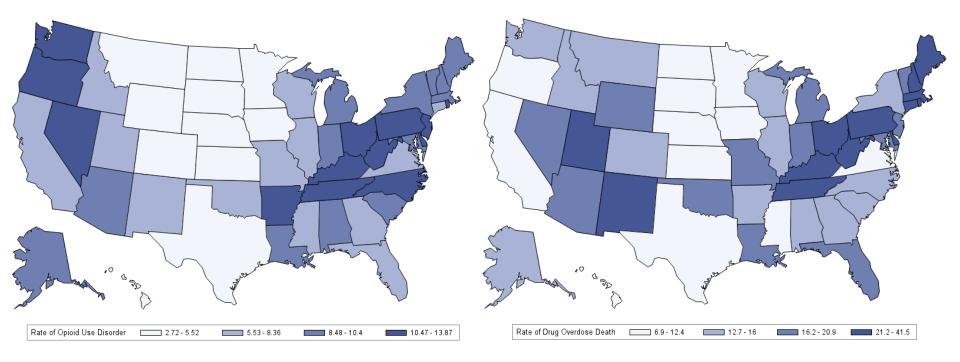
Trends in Overdose Deaths





Rates of Opioid Use Disorder and Drug Overdose Deaths by State

Rate of Drug Overdose Deaths

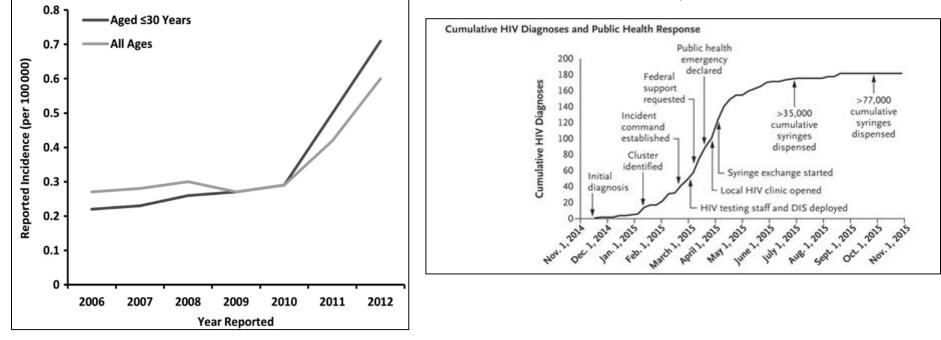


Source: Jones, C.M., unpublished analyses of NSDUH 2011–2014; Centers for Disease Control and Prevention's (CDC's) National Vital Statistics System (NVSS) (2015).

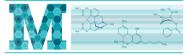
Opioid Epidemic and Increasing Injection Drug Use

Rising rates of hepatitis C (HCV)

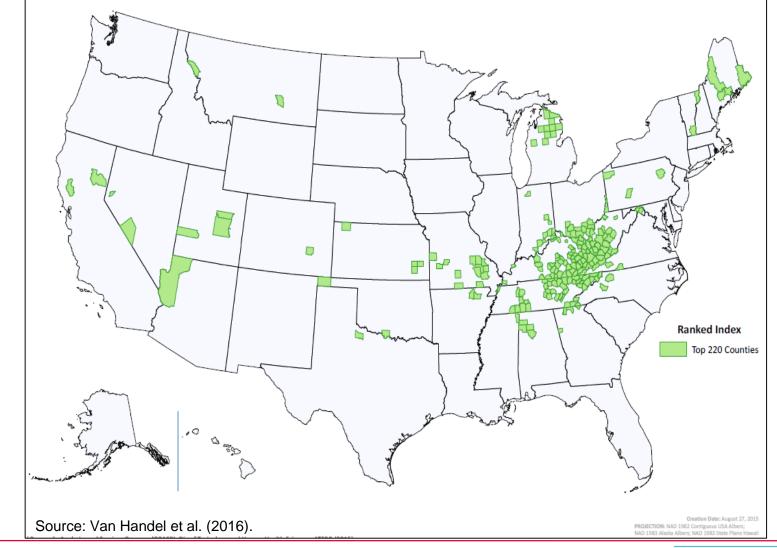
HIV outbreak in Scott County, Indiana, in 2015



Source: Suryaprasad et al. (2014); Peters et al. (2016).

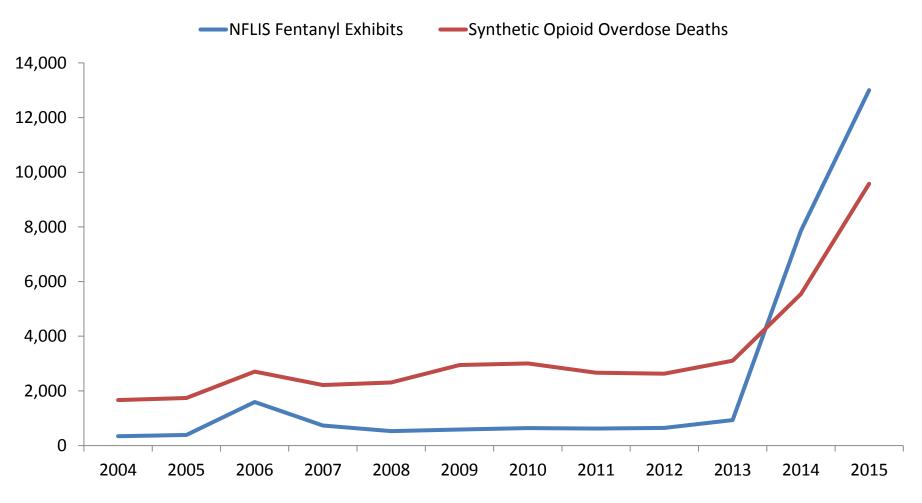


Counties Deemed Highly Vulnerable to Rapid Spread of HCV or HIV





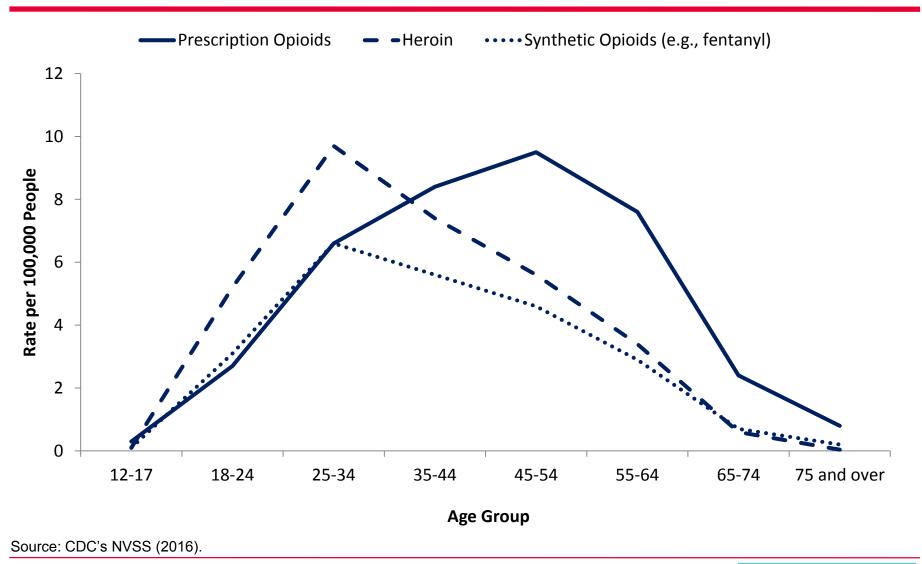
Synthetic Opioid Deaths Closely Linked to Illicit Fentanyl Supply

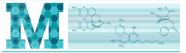


Source: Drug Enforcement Administration; CDC's NVSS (2017).

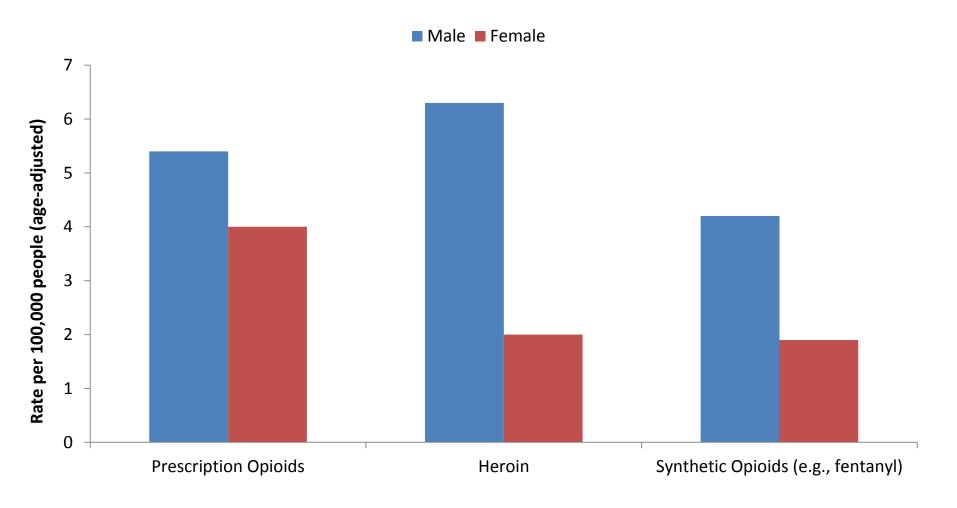
NFLIS = National Forensic Laboratory Information System.

Age Distribution of Opioid Deaths in 2015

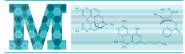




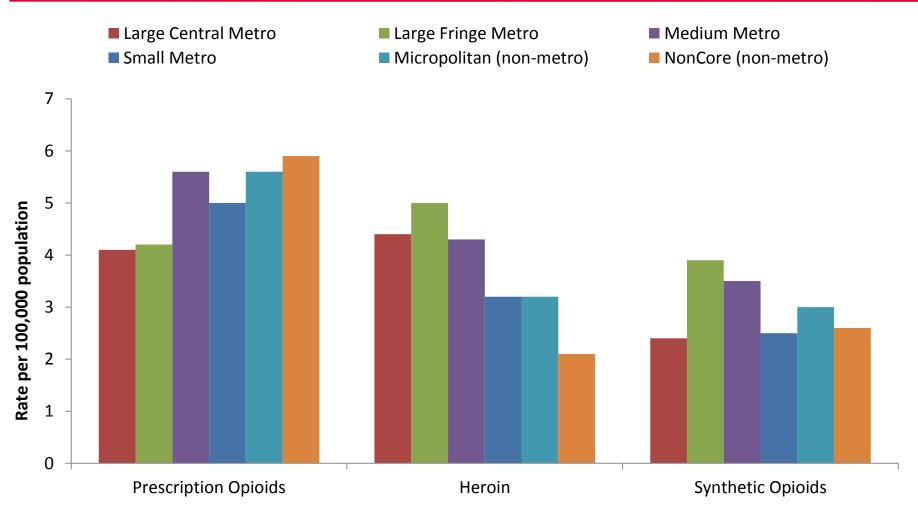
Opioid Overdose Deaths by Sex, 2015



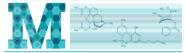
Source: CDC's NVSS (2016).



Opioid Overdose Deaths by Urbanicity, 2015



Source: CDC's NVSS (2016).



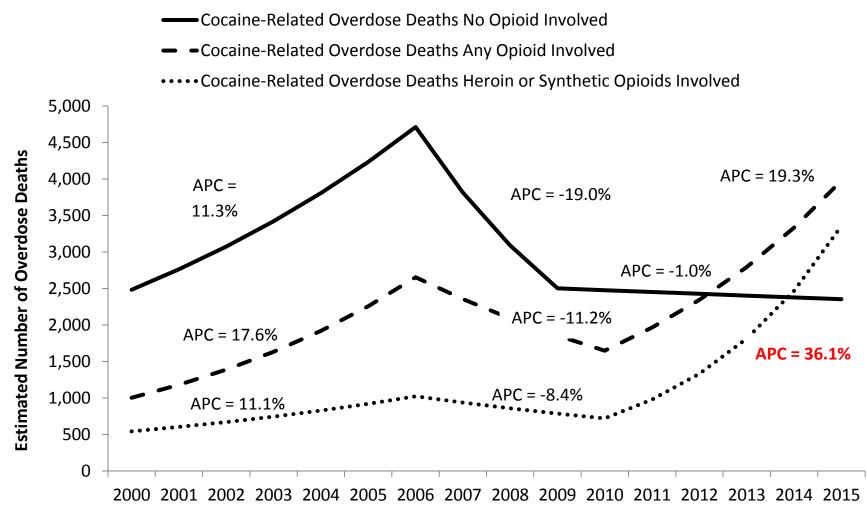
Fentanyl and Counterfeit Products Broaden At-Risk Population

- Reports of fentanyl being pressed into counterfeit tablets and sold as commonly abused opioids and benzodiazepines
- Reports of people who thought they were using cocaine but were actually using fentanyl

Figure 3: Counterfeit 30 Milligram Oxycodone Pills Containing Fentanyl.

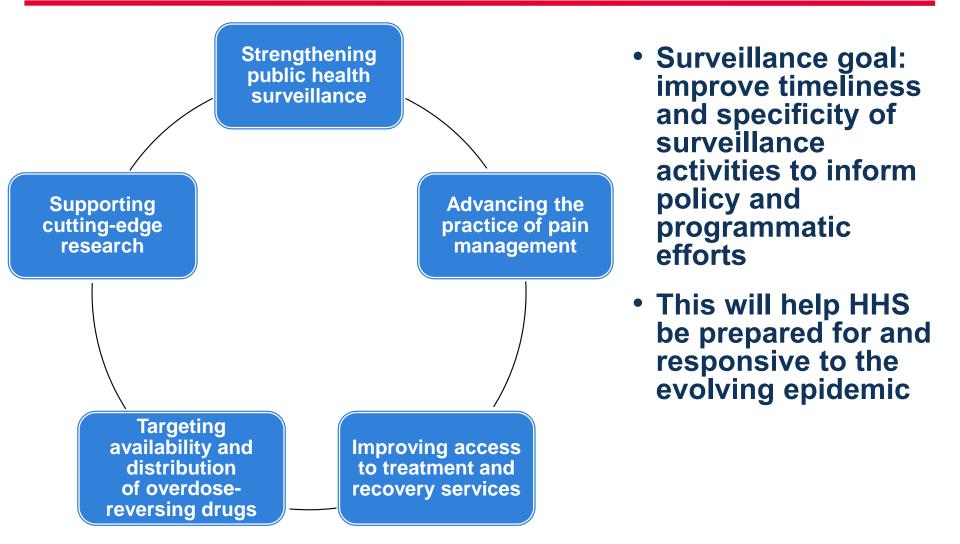


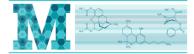
Heroin and Synthetic Opioids Driving Increase in Cocaine-Related Deaths



Source: Jones et al. (2017).

HHS Opioid Strategy



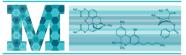


For More Information

- Christopher Jones
 - <u>Christopher.Jones@HHS.GOV</u>

Looking ahead to the next three to five years, do you think wastewater testing should focus on:

- A) Opioids
- B) Cocaine
- C) Marijuana
- D) Emerging substances
- E) All of the above



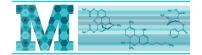
III. Public health applications of wastewater testing

Dan Burgard University of Puget Sound

Caleb Banta-Green University of Washington

32

Kevin Bisceglia Hofstra University



Wastewater Testing: A Pipeline to Public Health Data

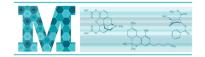
Wastewater Symposium Washington, DC

May 16, 2017

Daniel A. Burgard • Kevin Bisceglia • Caleb Banta-Green

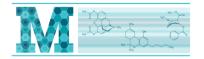
What Are Drug Epidemiology Goals? (broadly applies to other health behaviors)

- Track changes in use over time
 - Evaluate intervention impacts
 - Changes in use or supply
- Determine level of use (absolute or relative)
 - Determine prevalence
 - Prioritize interventions
- Identify/document new drugs
 - Identify new/incidental use
 - Alert public
 - Determine interventions



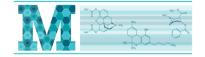
Drug Abuse Surveillance— Current Limitations

- Lack of <u>geographic</u> resolution: current surveys provide national-level drug use/abuse data but little at the state or substate level
- Lack of temporal resolution (annual data) and timely availability
- <u>Population coverage</u>: Large portion of drug-using community is currently excluded
- <u>Small number of "events"</u> in many jurisdictions
- <u>Specific/actual drugs</u>

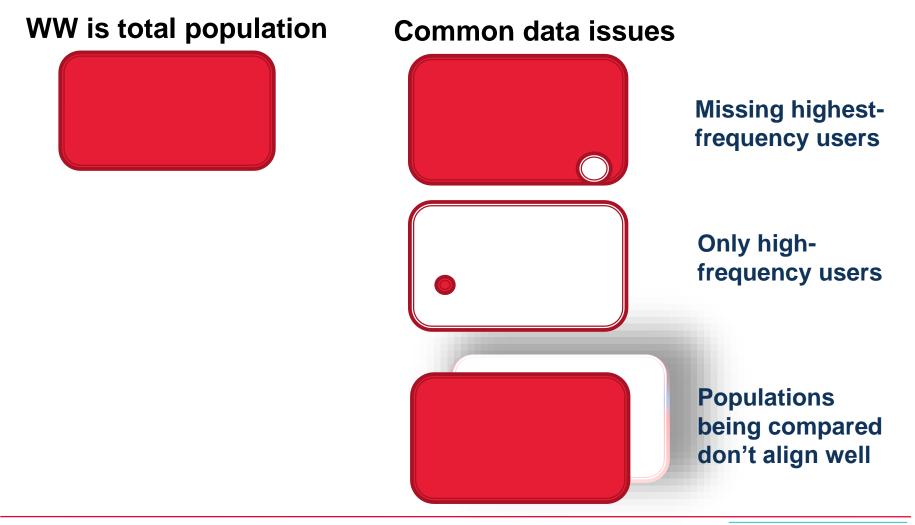


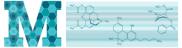
Examples of Measurement Bias

- Mortality data: only true population-level data
 - "Tip of the iceberg" because mortality is biased toward more lethal drugs and lags behind entrance of drugs into the "market"
- Current surveys usually:
 - Rely on self-reporting
 - Exclude populations such as prisoners
- Calls to poison control centers may decline as physicians recognize drug-related health problems and gain experience in treatment



Essential Data Comparison Problem

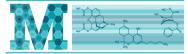




Raw Wastewater Influent

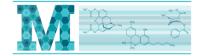
- Conveniently "focused" and sampled at a central location
- Least amount of degradation compared with effluent
- Preserves people's privacy
- Samples collected daily
- Known flows for calculation of loads

http://www.kingcounty.gov/environment/wtd/About/System/ West.aspx



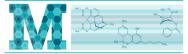
Attributes of Data Derived from Wastewater Treatment Plants (WWTPs) (1)

- Cover much of the population
 - But areas with septic systems are not covered
- Known catchment areas
- Generally follow political boundaries
 - Aids comparisons with other data types
 - Increases utility for local planners
- GIS/mapping data often available from local municipalities

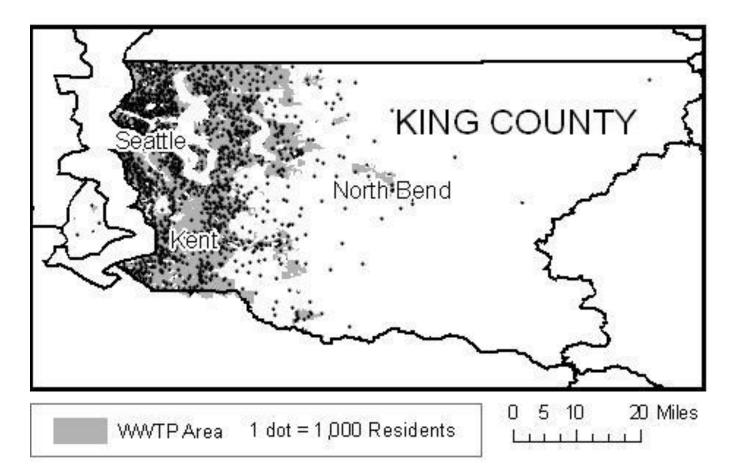


Attributes of Data Derived from WWTPs (2)

- Compound/drug specific
- Timely—available with short lag
- Time scalable (within day, day, month, year)
- Geographically scalable (could aggregate municipalities or go "upstream")



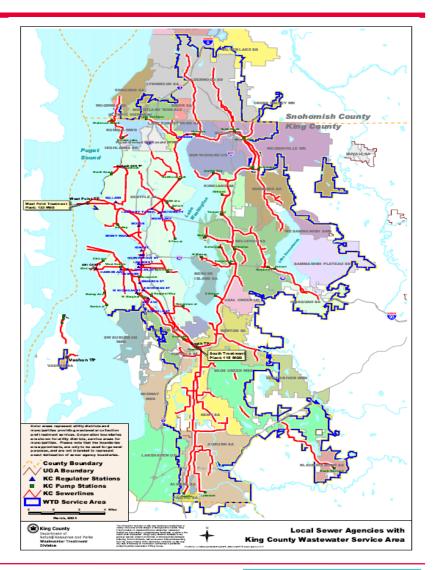
Population Covered by WWTP

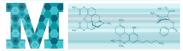


WWTPs cover 85% of the population of King County, Washington, based on place of residence: 1,482,427 of 1,737,034 residents

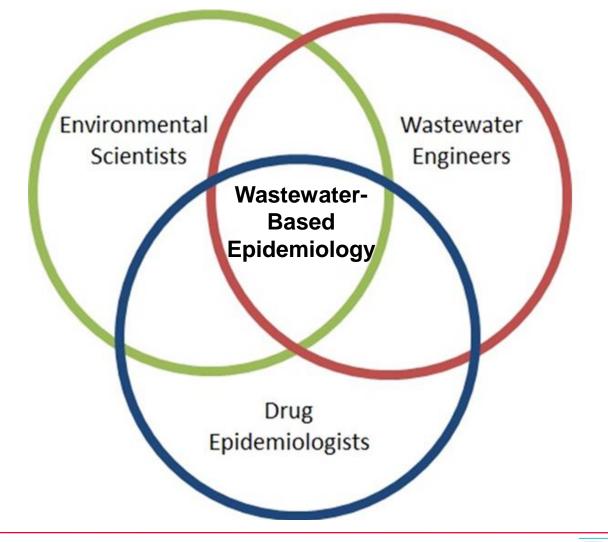
Wastewater Catchment Areas for King County

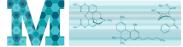
- Multiple places
- Moderate size
- Alignment with cities varies



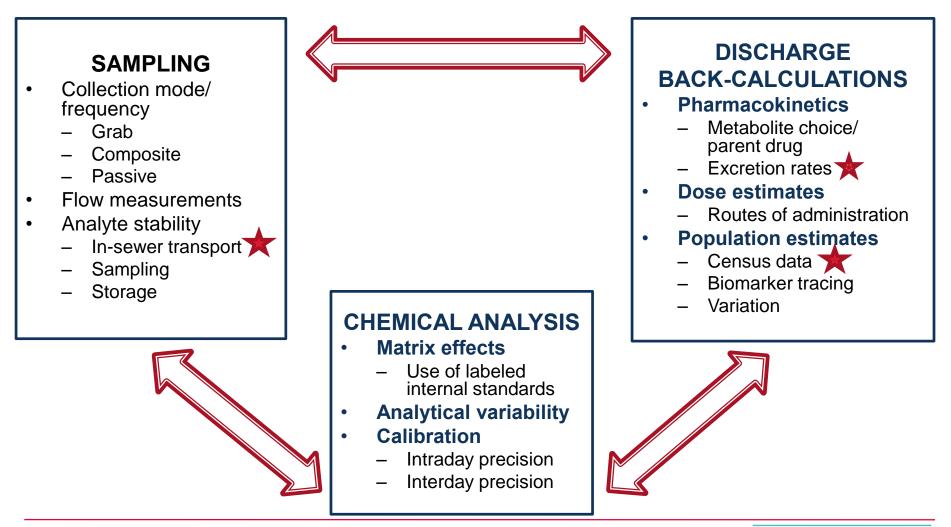


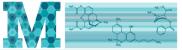
Wastewater-Based Epidemiology



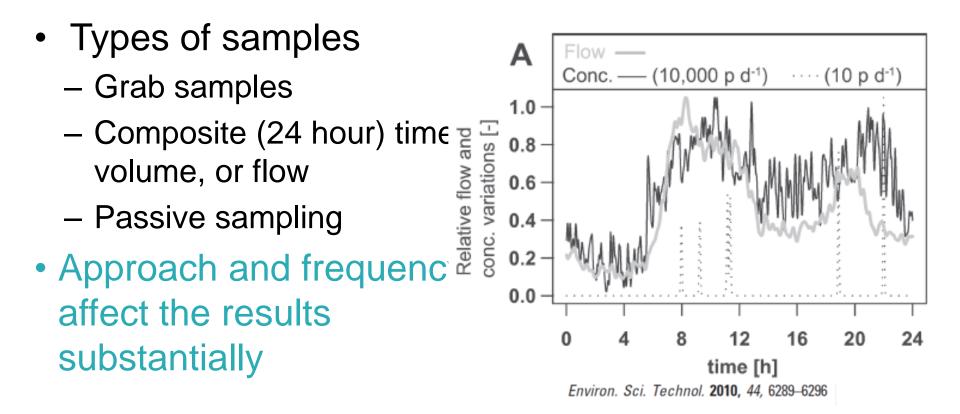


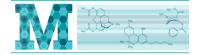
Factors Affecting the Utility of Wastewater-Based Epidemiology





Wastewater Testing

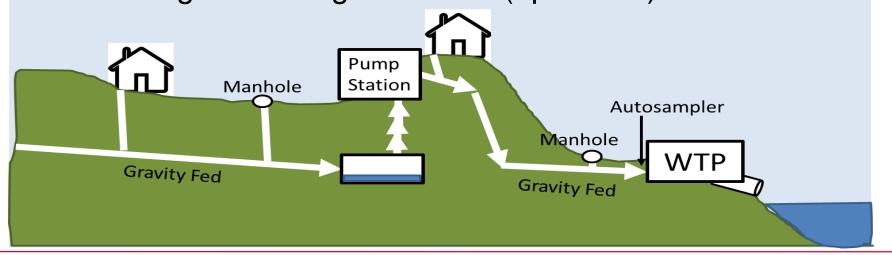


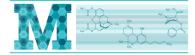


ial of Wastewater Testing for Public Health

Wastewater Collection

- Wastewater conveyance systems
 - Gravity-fed with or without pumps stations
- Locations
 - Treatment plants (downstream)
 - Sewer system (midstream)
 - Building/event/single location (upstream)





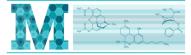
ntial of Wastewater Testing for Public Healt

Wastewater Autosamplers

Frozen composite

Refrigerated composite sampler at WWTP

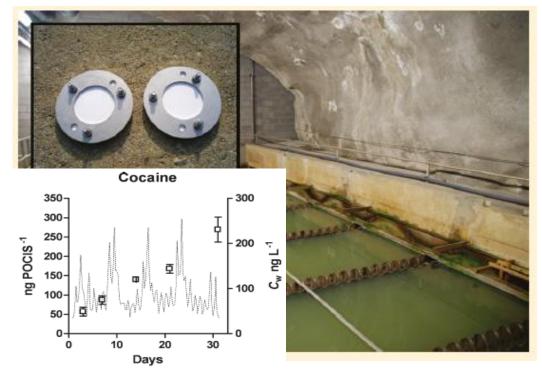
Upstream composite sampler



Passive Sampling

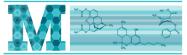
Deployed for 27 days

Sci. Total Environ. 2014, 472, 9-12



Deployed for five weeks compared with six-hour composites

Environ. Sci. Technol. 2011, 45(13), 5676-82

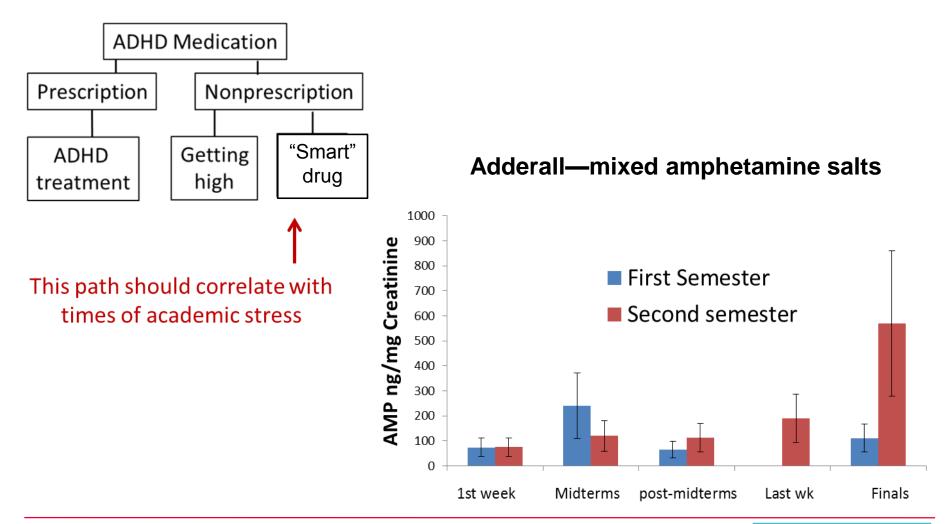


Wastewater as a Window into Public Health

- Prescription compliance and prevalence of specific ailments and health behaviors
 - Tamiflu compliance during flu outbreaks
 - Tobacco and alcohol use
- "Big-picture" trends in population health
 - Broad-spectrum antibiotics and OTC pain medicines?
 - Endogenous biomarkers of stress?
 - Trends in obesity through changes in gut microbiome
- Pathogen surveillance
 - Polio, hepatitis, and other disease vectors—track or predict outbreaks in near-real time?
 - Antibiotic resistance?



College Case Study



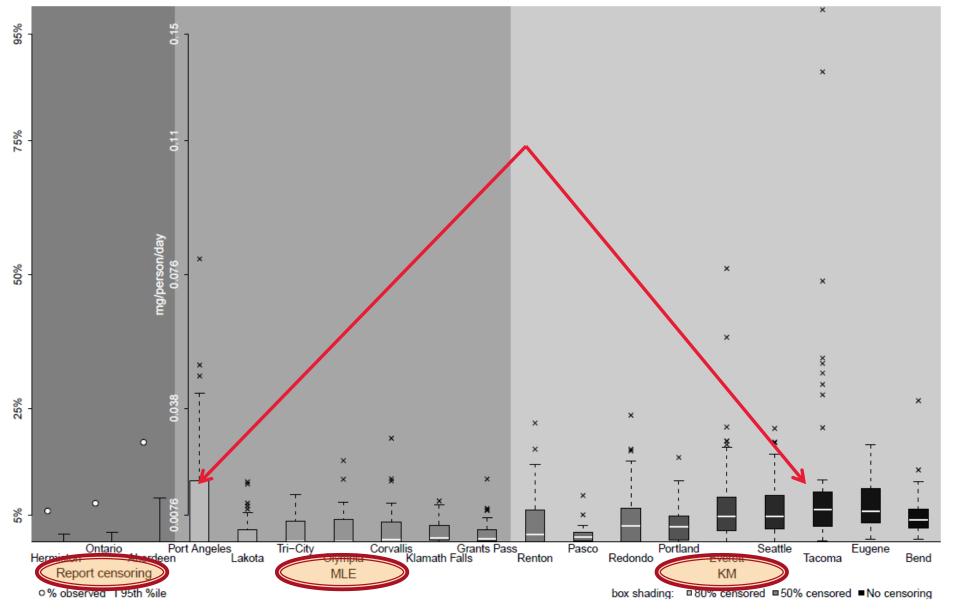


Figure 2: MDMA index load (mg/person/day) distribution

The label under the WWTP names and the background shading indicate which method is used to create the estimated yearly mean.

Methamphetamine Use in Washington State and Oregon

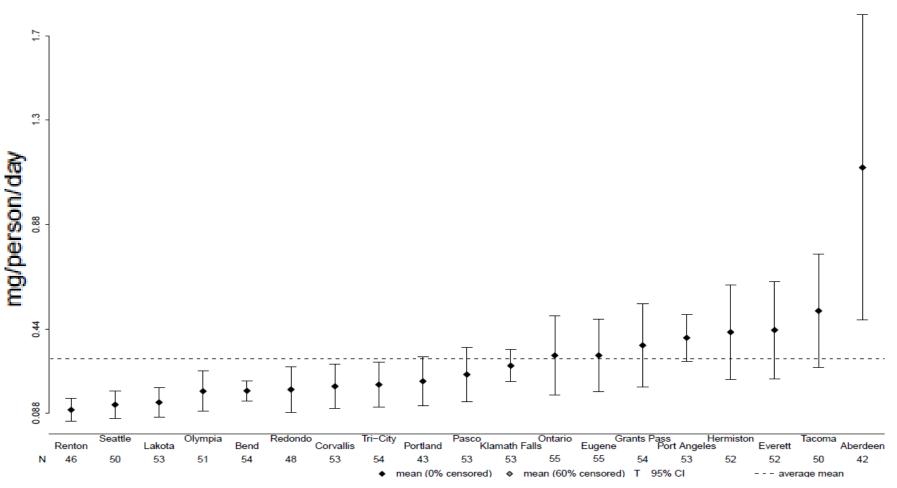
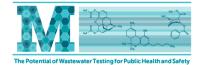


Figure 7: Methamphetamine index load (mg/person/day) mean with 95% confidence interval



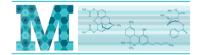
52

Statistical Analyses

- Need to create:
 - Index load-estimated concentration of drug/metabolite, adjusting for sample preparation procedures, total wastewater flow, and population
 - Confidence bounds for estimate
- Address missing/censored data

consumption—Statistical analyses and data presentation

Caleb J. Banta-Green^{a,} Alex J. Brewer^{b, c}, Christoph Ort^d, Dennis R. Helsel^e, Jason R. Williams^a, Jennifer A. Field^b



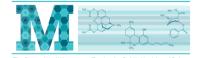
ential of Wastewater Testing for Public Healt

Overview of Wastewater Testing for Drugs

Drug	Studies/findings	Challenges/issues
Illicit stimulants	Often detected	Sometimes below detection limits. Common drugs, deaths common.
Cannabis	Difficult to interpret	Very limited human metabolization data, in- sewer metabolization complicated.
Heroin	Difficult to detect and interpret	Degrades to nonspecific metabolites quickly. Seems ill-suited to wastewater testing.
Rx opioids	Most are easy to detect	High potency compounds, present at very low levels. Added value of wastewater testing?
Non-Rx opioids/ fentanyls	Very difficult to detect	Very low concentrations. Major public health concern, high lethality. Presence/absence important.

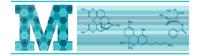


- What do we really want to know?
- Is a specific drug present:
 - In our city?
 - At a specific venue?
- Comparing trends across place or time?
- What are the characteristics of the drugs, users, and system?
- Can the real questions of interest be answered with wastewater testing?



For More Information

- Dan Burgard, Ph.D.
 - dburgard@pugetsound.edu
- Kevin Bisceglia, Ph.D.
 - Kevin.J.Bisceglia@hofstra.edu
- Caleb Banta-Green, Ph.D., M.P.H., M.S.W.
 - <u>calebbg@uw.edu</u>



The Potential of Wastewater Testing for Public Hea

Panel Discussion

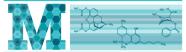
Dan Burgard University of Puget Sound

Caleb Banta-Green University of Washington

Kevin Bisceglia Hofstra University

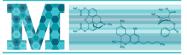
Katrice Lippa National Institute of Standards and Technology

Moira O'Brien National Institute on Drug Abuse



Melinda Campopiano

Substance Abuse and Mental Health Services Administration



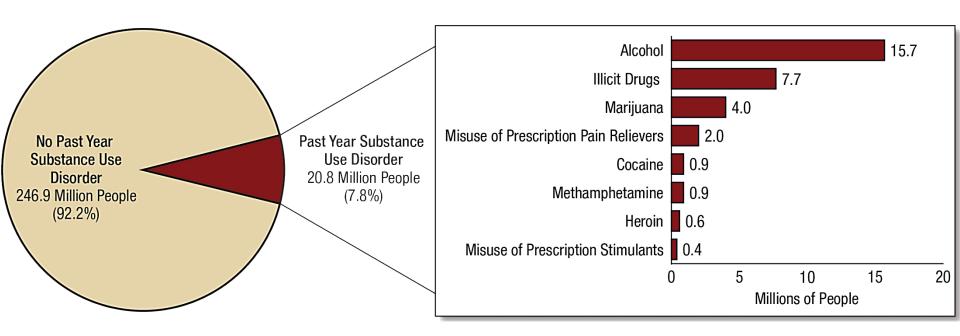
Knowledge Gaps in Treatment of Substance Use Disorder

Wastewater Symposium Washington, DC

May 16, 2017

Melinda Campopiano, M.D. SAMHSA/CSAT

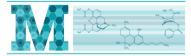
Number of People Ages 12 or Older with a Past-Year Substance Use Disorder: 2015 National Survey on Drug Use and Health (NSDUH)



Notes:

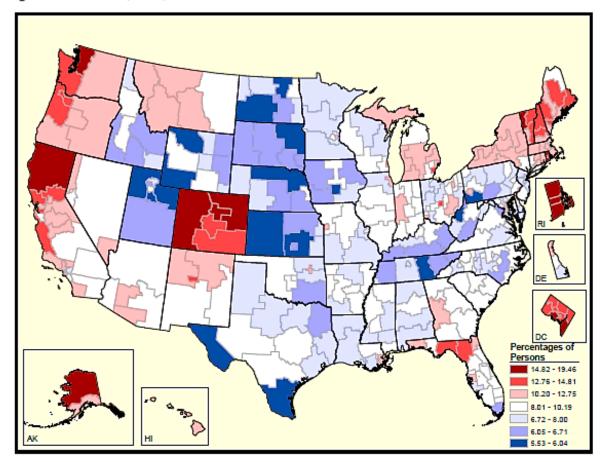
The estimated numbers of people are people ages 12 or older in the civilian, noninstitutionalized population in the United States. The numbers do not sum to the total population of the United States because the population for NSDUH does not include people ages 11 or younger, people with no fixed household address (such as homeless or transient people not in shelters), active-duty military personnel, and residents of institutional group quarters (such as correctional facilities, nursing homes, mental institutions, and long-term care hospitals).

The estimated numbers of people with substance use disorders are not mutually exclusive because people could have use disorders for more than one substance.



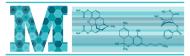
Substate Reports: Illicit Drug Use in Past Month

Figure 1 Illicit Drug Use in the Past Month among Individuals Aged 12 or Older, by Substate Region: Percentages, Annual Averages Based on 2012, 2013, and 2014 NSDUHs



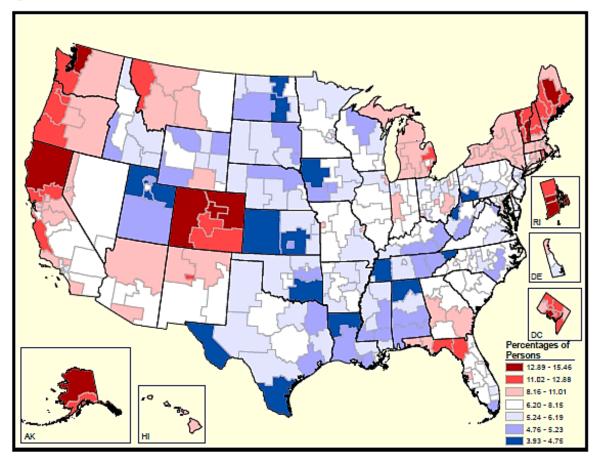
NOTE: For substate region definitions, see the "2012-2014 National Survey on Drug Use and Health Substate Region Definitions" at http://www.samhsa.gov/data/.

Source: SAMHSA, Center for Behavioral Health Statistics and Quality, National Survey on Drug Use and Health, 2012, 2013, and 2014.



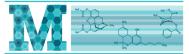
Substate Reports: Marijuana Use in Past Month

Figure 3 Marijuana Use in the Past Month among Individuals Aged 12 or Older, by Substate Region: Percentages, Annual Averages Based on 2012, 2013, and 2014 NSDUHs

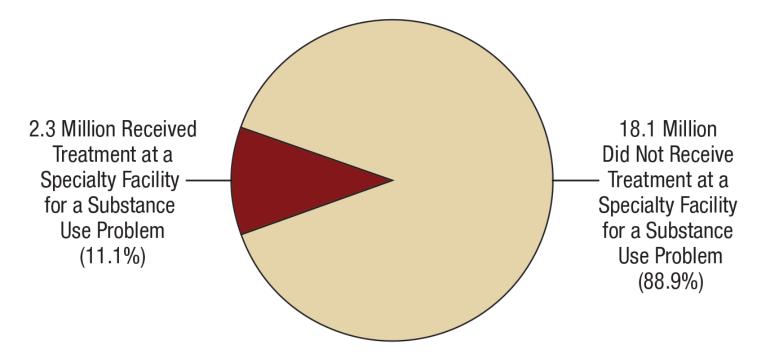


NOTE: For substate region definitions, see the "2012-2014 National Survey on Drug Use and Health Substate Region Definitions" at http://www.samhsa.gov/data/.

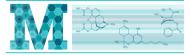
Source: SAMHSA, Center for Behavioral Health Statistics and Quality, National Survey on Drug Use and Health, 2012, 2013, and 2014.



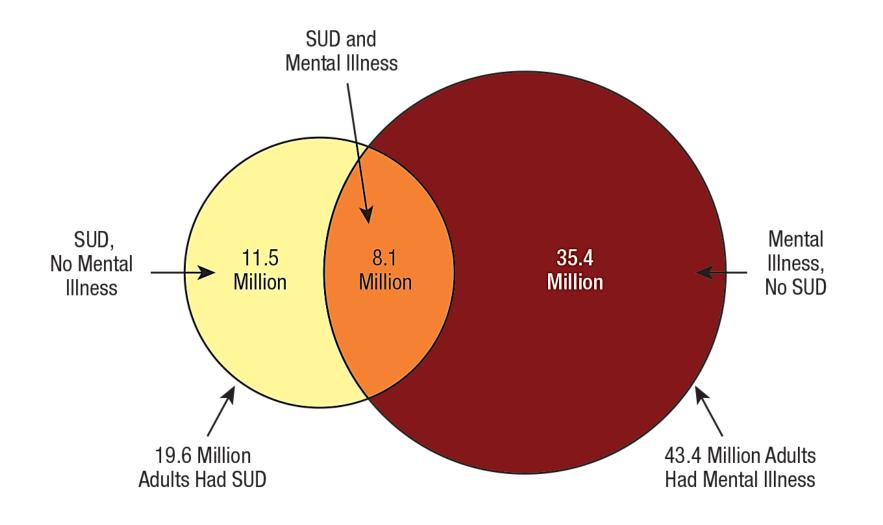
Receipt of Specialty Treatment in the Past Year Among Adults Age 18 or Older Who Needed Substance Use Treatment in the Past Year: 2015 NSDUH

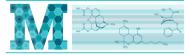


20.4 Million Adults Needed Substance Use Treatment

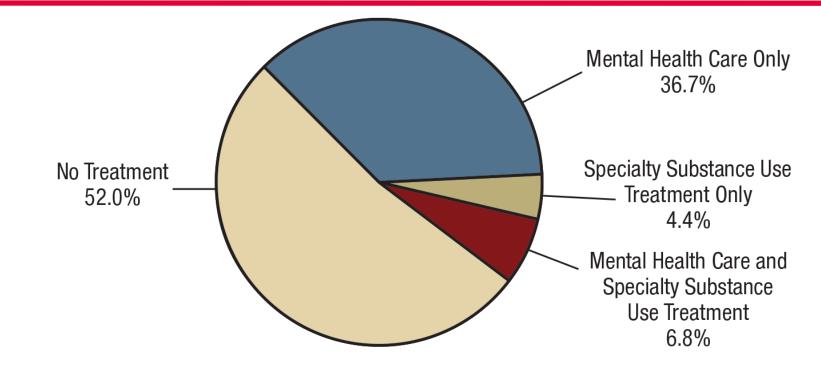


Past-Year Substance Use Disorder (SUD) and Mental Illness (MI) Among Adults Age 18 or Older: 2015 NSDUH





Receipt of Mental Health Care and Specialty Substance Use Treatment in Past Year Among Adults Age 18 or Older Who Had Past-Year MI and SUD: Percentages, 2015 NSDUH



8.1 Million Adults with Co-Occurring Mental Illness and Substance Use Disorders

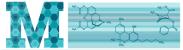
Notes:

Mental health care is defined as having received inpatient care or outpatient care or having used prescription medication for problems with emotions, nerves, or mental health. Specialty substance use treatment refers to treatment at a hospital (inpatient only), rehabilitation facility (inpatient or outpatient), or mental health center to reduce or stop drug or alcohol use or for medical problems associated with drug or alcohol use.

The percentages do not add to 100% due to rounding.

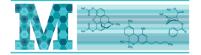
Treatment (1)

- What type of treatment is being provided, and where?
- How are medications and psychosocial services being provided, together and/or separately?



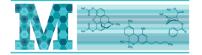
Treatment (2)

- What role does stigma play among providers, the public, and patients—broadly and for specific types of treatments?
- How does implementation of evidence-based treatment vary across communities?



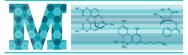
otential of Wastewater Testing for Public H

- What drugs are being used, and how does this vary across communities?
- Does depersonalized information about substance use in a community increase or decrease prejudice and misinformation?



The Potential of Wastewater Testing for Public H

 Is it possible to find out when new synthetic substances become available in a community so we can warn the public and educate potential users to reduce morbidity and mortality?



Thank you!

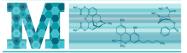
- Melinda Campopiano
 - Melinda.Campopiano@samhsa.hhs.gov

Panel Discussion

Melinda Campopiano Substance Abuse and Mental Health Services Administration

Renee Johnson Johns Hopkins University

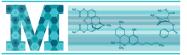
Aleksandra Zgierska American Society of Addiction Medicine



V. Successes and hurdles in international wastewater testing efforts

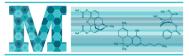
Jochen Mueller

University of Queensland



Introduction to Wastewater-Based Epidemiology

 Click <u>here</u> to watch a short video introducing wastewater-based epidemiology



score

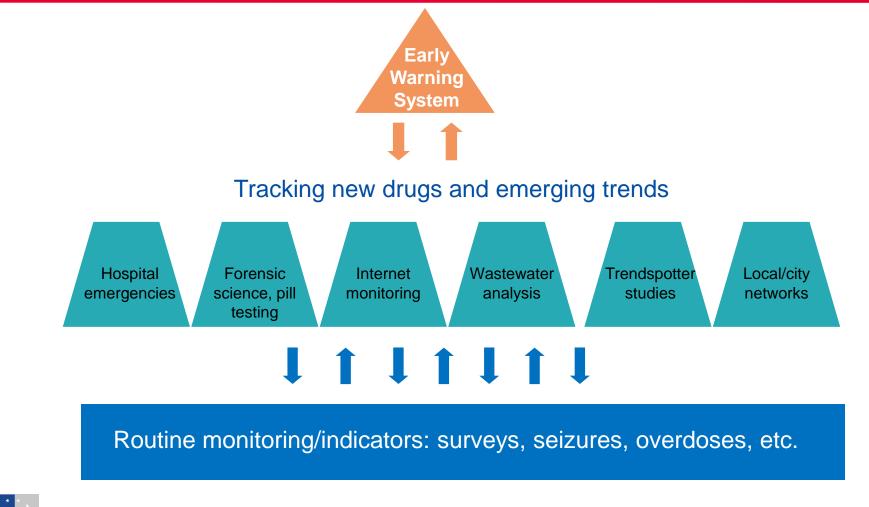
Wastewater Symposium Washington, DC

May 16, 2017

Jochen Mueller • Sara Castiglioni • Liesbeth Vandam • Kevin Thomas

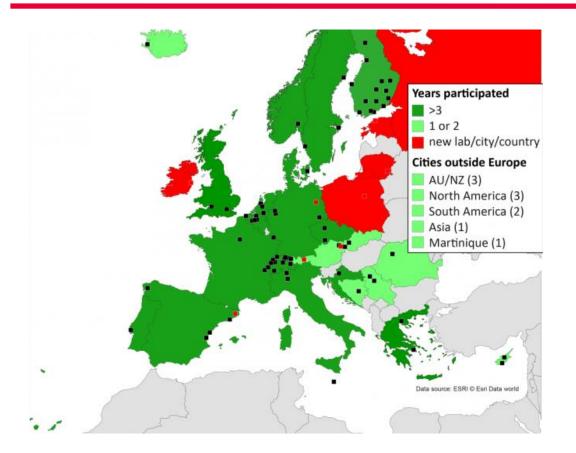
On behalf of Sewage Analysis CORe group Europe (SCORE), the Australian National Wastewater Drug Monitoring Program, and related programs conducted by presenters

Monitoring in the EU: A Multisource Approach

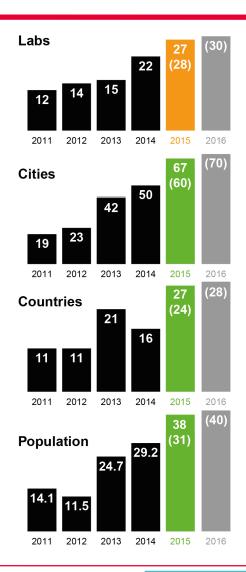


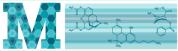
European Monitoring Centre for Drugs and Drug Addiction

SCORE as a Data Provider

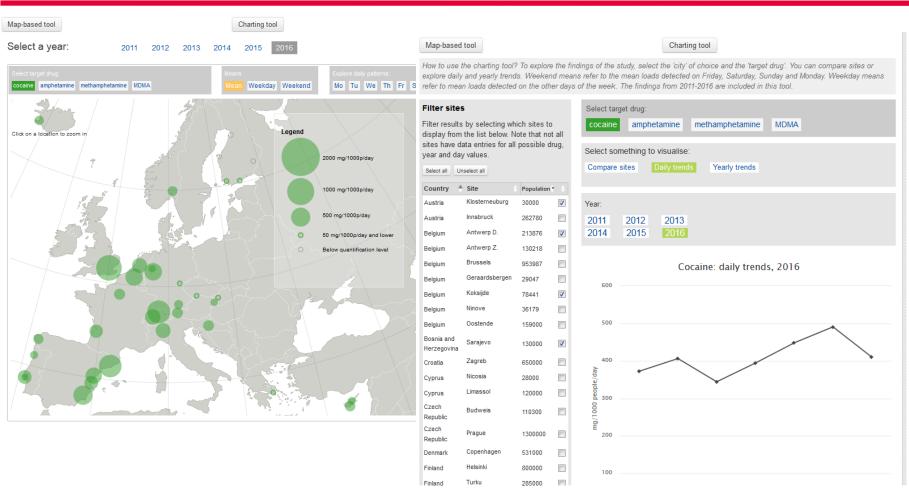


European Monitoring Centre for Drugs and Drug Addiction





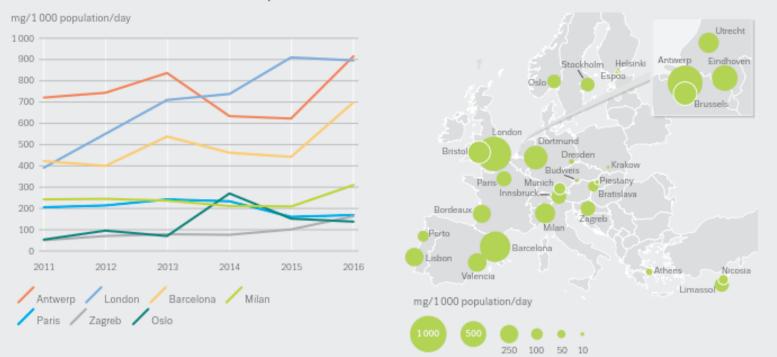
EMCDDA Publication of Wastewater Findings



European Monitoring Centre for Drugs and Drug Addiction

EMCDDA = European Monitoring Centre for Drugs and Drug Addiction

Cocaine Findings, 2016

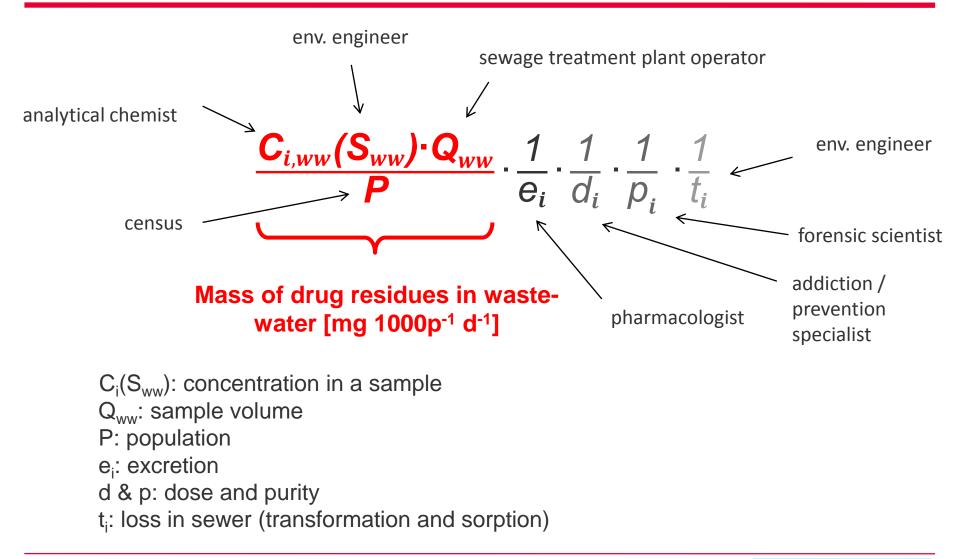


Cocaine residues in wastewater in selected European cities: trends and most recent data

NB: Mean daily amounts of benzoylecgonine in milligrams per 1 000 population. Sampling was carried out in selected European cities over a week in 2016. Source: Sewage Analysis Core Group Europe (SCORE).

European Monitoring Centre for Drugs and Drug Addiction

The Fundamentals...Simplified (1)



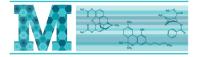
The Fundamentals...Simplified (2)

Population-normalized drug consumed (M) estimated from:

$$M_{i} = \frac{C_{i,ww} \cdot Q_{ww}}{Population} \cdot CorrFac_{i} \quad in \quad \frac{g}{day \cdot person}$$

Mi: mass load of chemical normalized to sampling period (day) and population
 Ci(Sww): concentration in a sample; a function of concentration and analytical method
 Qww: sampling; the smaller the catchment, the greater the sampling requirements; potential issue with sampling of hydrophobic chemicals

P: population; modelled from other markers; uncertainty in spatial > temporal trends CorrFac: excretion, loss in sewer, and other factors



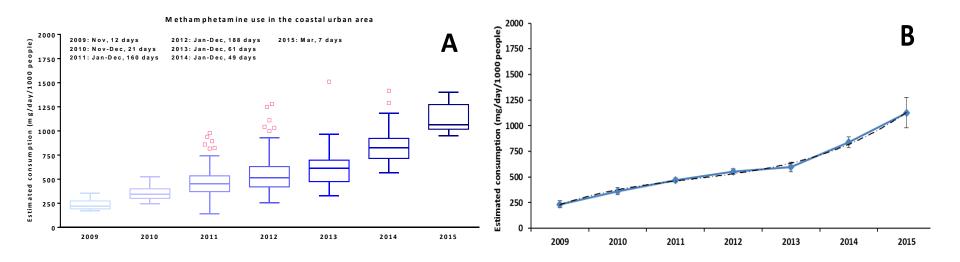
Uncertainties—Methamphetamine in Australia

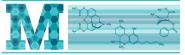
- Trend observable
- Uncertainties relatively small
- Trend probably too big to explain by increase in purity/dose
- Trend holds across populations

National ICE Taskforce

→ Recommends wastewater analysis
 → Control the ICE "epidemic"

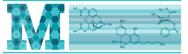
Wastewater analysis—accurate and reliable for Methamphetamine



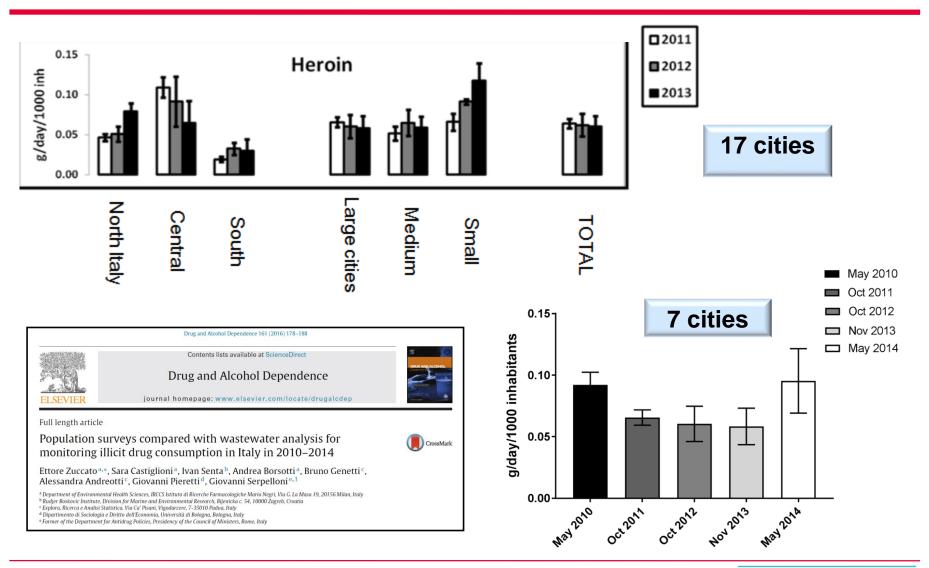


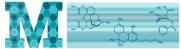
Some Opioids Targeted by Wastewater Analysis

Common Opioids	Metabolite/target	Other opioids	Metabolite/target
Codeine	Codeine Norcodeine Codeine-6-glucuronide Morphine	Ketamine	Ketamine Norketamine
		Buprenorphine	Buprenorphine Norbuprenorphine
Fentanyl	Fentanyl Norfentanyl	Hydrocodone	Hydrocodone Norhydrocodone
Ketamine	Ketamine Norketamine	Hydromorphone	Hydromorphone Hydromorphone-glucuronide
Methadone	Methadone EDDP	Oxymorphone	Oxymorphone Oxymorphone-glucuronide
Morphine	Morphine Morphine-glucuronide		
Oxycodone	Oxycodone Noroxycodone Oxymorphone		
Heroin (diacetylmorphine)	6-monoacetylmorphine (6-MAM) Morphine		

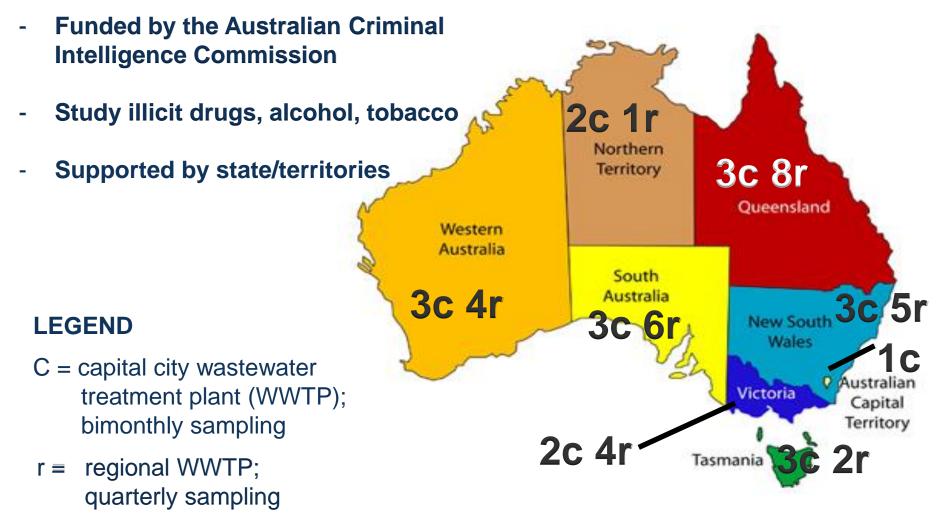


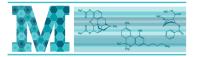
Heroin Temporal Trends in Italy, EU





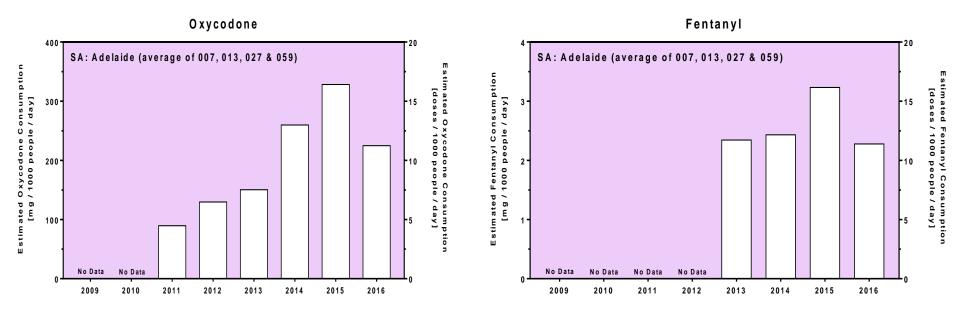
Australian National Wastewater Drug Monitoring Program

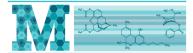




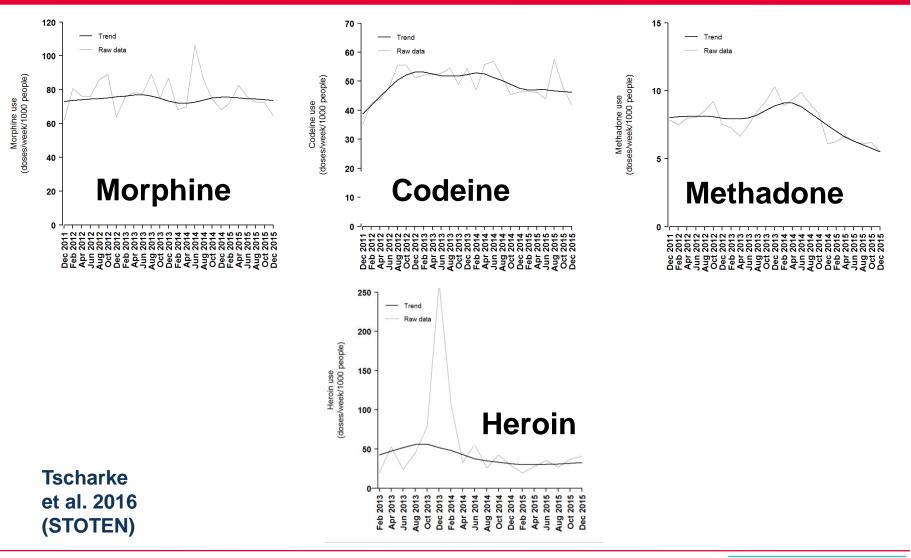
ential of Wastewater Testing for Public Health

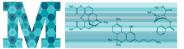
Opioid Trends in Adelaide, Australia



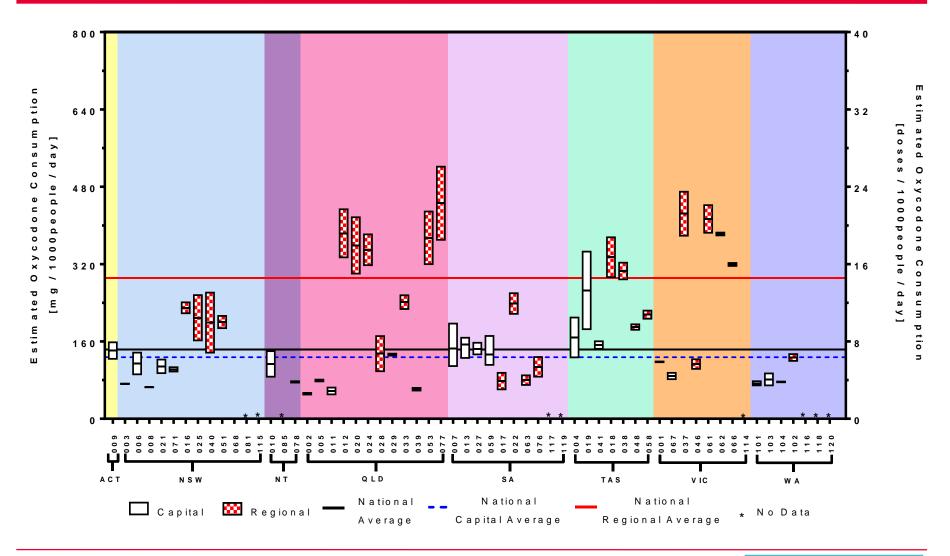


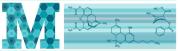
Estimated Opioid Use in Adelaide (2011–2015)



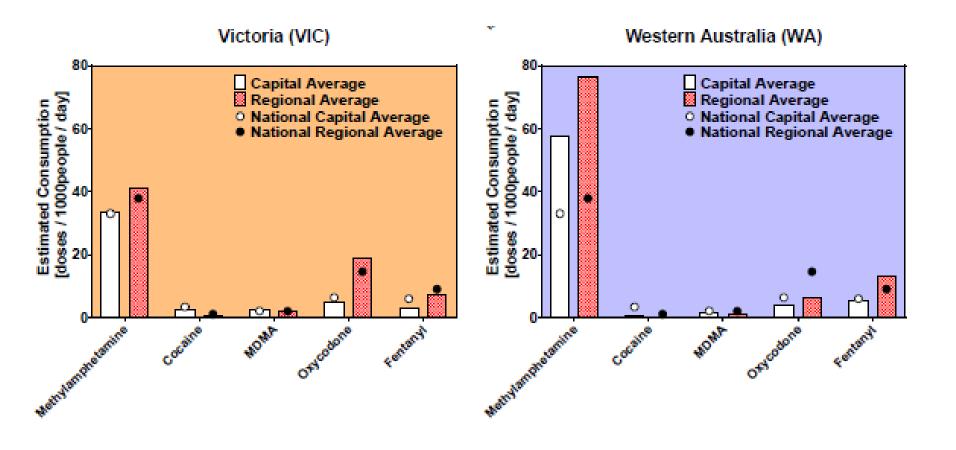


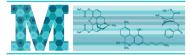
Spatial Trends of Oxycodone Use in Australia





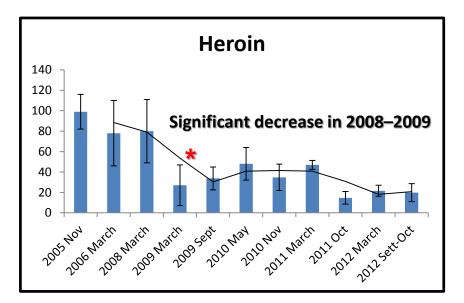
Attempting to Compare Use of Different Drugs





Comparison with Other Data Sources

Trends in Milan, Italy, 2005–2011, from wastewater-based epidemiology



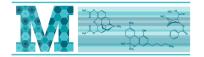
Zuccato et al. (2011)

Epidemiological data general population survey

Data reported in the Annual National Report in 2010

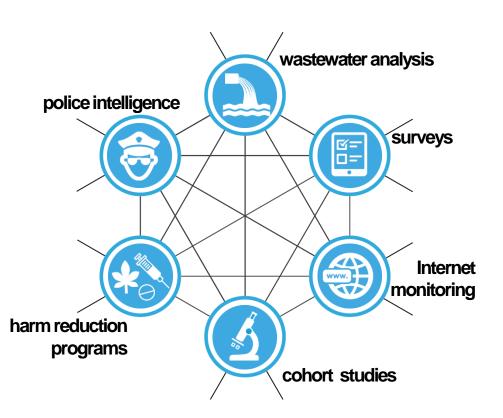
Sostanze	2008	2009	Differenza	Scostamento % (∆%)
Eroina	0,39	0,25	-0,14	-35,9

Similar decrease of heroin consumption from 2008 to 2009!



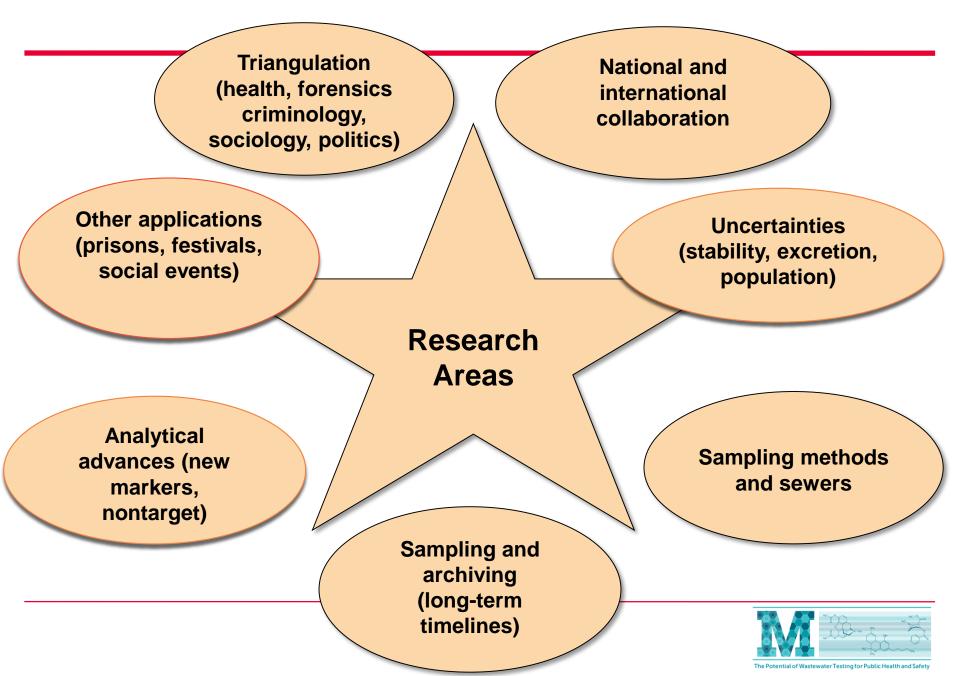
ntial of Wastewater Testing for Public Health

Triangulation of Drug Use

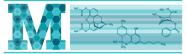


- Provide alternative perspectives to evaluate estimates
- Help target/identify new harms
 - What to look for in wastewater
- Include data about consumption habits/frequency
 - Use wastewater data to estimate number of users per type (occasional, regular, etc.)
- Intelligence about drug trafficking and criminal organizations
 - Estimate market size and/or share held by specific criminal organisations

Where to...?

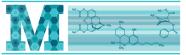


- Wastewater analysis is now routinely used to monitor a wide range of drugs
- Routine programs in Europe and Australia include monitoring of trends of selected opioids
- Uncertainties exist with assessing use of various opioids



For More Information

- Jochen Mueller
 - J.mueller@uq.edu.au
- Sara Castiglioni
 - <u>S.Castiglioni@marionegri.it</u>
- Liesbeth Vandam
 - Liesbeth.Vandam@emcdda.europa.eu



Panel Discussion

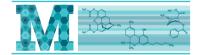
94

Jochen Mueller The University of Queensland

Sara Castiglioni Mario Negri Institute for Pharmacological Research

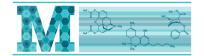
Frederic Been University of Antwerp

Liesbeth Vandam European Monitoring Centre for Drugs and Drug Addiction



If we think about how to translate the European monitoring system to the U.S., at what level should coordination begin?

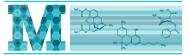
- A) City/Town level
- B) Regional level
- C) State level
- D) National level
- E) All of the above



VI. Keynote Speaker

J.B. Wogan

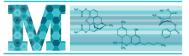
Governing Magazine



VII. Knowledge gaps in prevention of opioid and other substance abuse

Jeffrey Locke

National Governors Association



How Governors and States Are Approaching the Opioid Epidemic

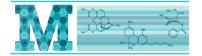
Wastewater Symposium Washington, DC

May 16, 2017

Jeffrey Locke National Governors Association (NGA)

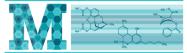
Road Map to the Presentation

- NGA background
- Snapshot of the problem
- Challenges facing governors
- State efforts and progress
- Selected state strategies and trends



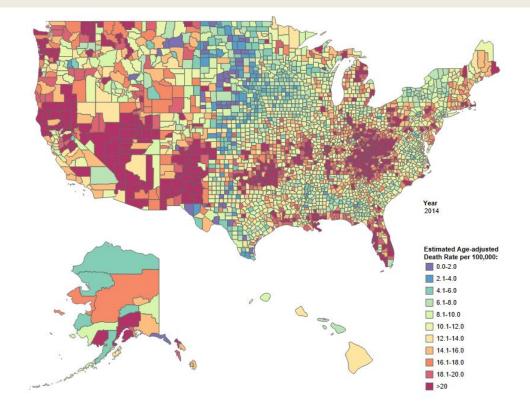
About the National Governors Association

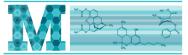
Conference of Governors The White House, 1908



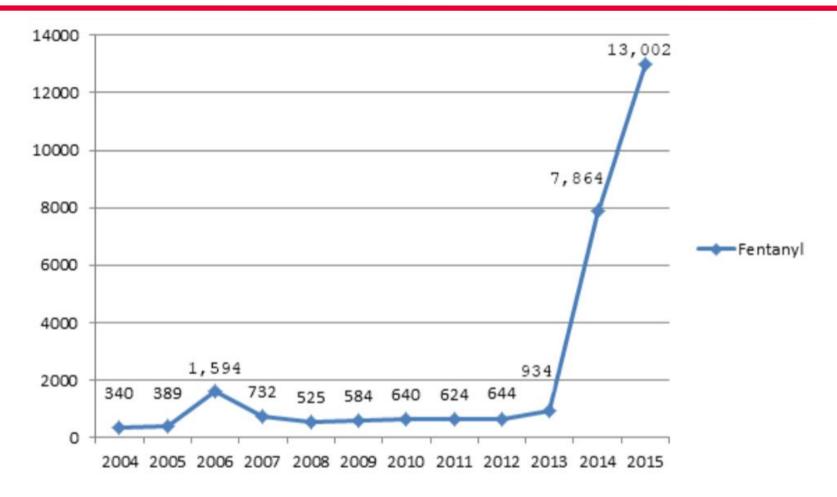
Opioid Deaths by State, 1999–2014

2014 RAPID INCREASE IN RATES OF DRUG OVERDOSE DEATHS



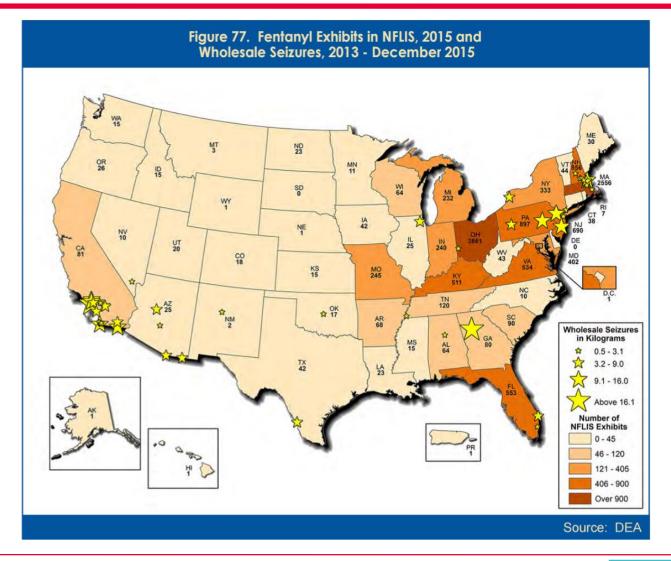


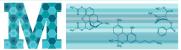
Growth of Illicit Fentanyl



Source: National Forensic Laboratory Information System (NFLIS) (2015). Note: Data show the number of fentanyl exhibits in NFLIS, 2004–2015.

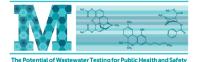
Snapshot of Illicit Fentanyl Nationally





Challenges Facing Governors in the Opioid Crisis

- This crisis is affecting constituents' lives
- The solutions are not simple
- The stigma surrounding opioid use disorder is changing



Governors Fighting the Opioid Epidemic

A Compact to Fight Opioid Addiction

Governors have long been at the forefront of efforts to prevent and treat opioid addiction, working with health care providers, law enforcement and other stakeholders to mount a comprehensive response to the opioid crisis. Although there has been progress in recent years, inappropriate opioid prescribing continues to fuel one of the deadliest drug epidemics in our nation's history, claiming the lives of 78 people every day. More Americans died from drug overdoses in 2014 than in any year on record. Driven by a spike in opioid-related deaths, drug overdose now surpasses involve prescription painkillers, an increasing number are linked to heroin and fentanyl, a powerful synthetic opioid often packaged and sold as heroin. The consequences of the opioid epidemic continue to reverberate through society, ruining lives, devastating families and overwhelming the health care system, law enforcement and social services.

During the 2016 NGA Winter Meeting, governors agreed that collective action is needed to end the opioid crisis. With more lives lost every day, governors are redoubling their efforts to combat the epidemic with bold and thoughtful new strategies. While states play a central role in ending this public health and safety emergency, they cannot do it alone. Turning the tide on the epidemic requires a coordinated response across all levels of government and strong leadership from the private sector, including opioid manufacturers and prescribers.

With this compact, the undersigned commit to build on their efforts to fight opioid addiction by

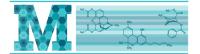
Taking steps to reduce inappropriate opioid prescribing, which may include:

NATIONAL

GOVERNORS

- Partnering with health care providers to develop or update evidence-based opioid prescribing guidelines, which may be informed by CDC's guideline, and consider prescription limits with exceptions for certain patients and circumstances;
- Requiring that physicians, osteopaths, nurse practitioners, physician assistants, dentists, veterinarians and all
 other opioid prescribers receive education on pain management, opioid prescribing and addiction throughout
 their training and careers;
- Integrating data from state prescription drug monitoring programs (PDMPs) into electronic health records and requiring PDMP use by opioid prescribers and dispensers; and
- Reducing payment and administrative barriers in Medicaid and other health plans to promote comprehensive pain management that includes alternatives to opioid painkillers.
- Leading efforts to change the nation's understanding of opioids and addiction, which may include:
 - Developing a communications strategy through the governor's office to raise awareness about the risks of abuse associated with opioid use and reduce the stigma of addiction;
 - Establishing social media campaigns and integrating education into schools, athletic programs and other community-based settings to raise awareness about opioid abuse and addiction among youth and other atrisk groups; and
 - Partnering with professional associations to improve understanding of the disease of addiction among health care providers and law enforcement.

NGA OPIOID COMPACT SIGNED BY 46 GOVERNORS IN JULY 2016 www.nga.org



Governors Fighting the Opioid Epidemic

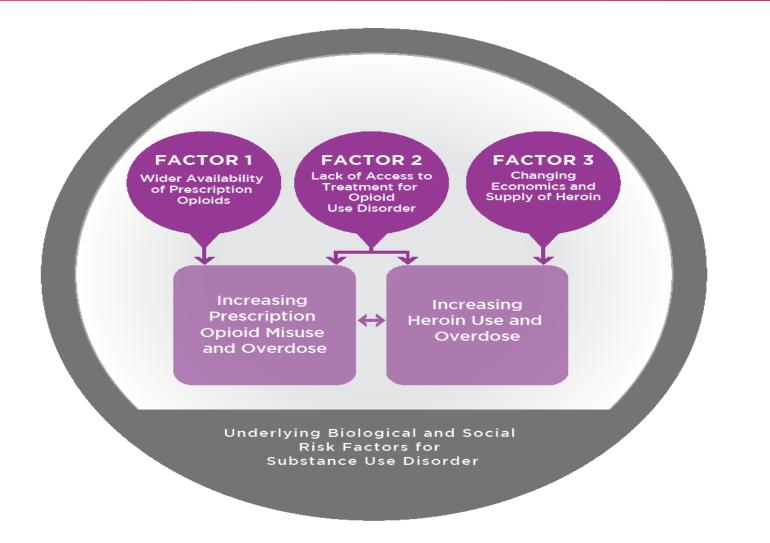
Finding Solutions to the Prescription **Opioid** and **Heroin Crisis:** A Road Map for States

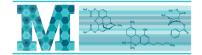
NGA OPIOID ROAD MAP

www.nga.org

The Potential of Wastewater Testing for Public Healt

Opioid Road Map: Key Factors

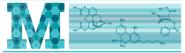




Comprehensive Policy Framework for States

Overarching Prescription Opioid Misuse and Heroin Policy Framework

Health Care and Public Safety



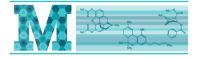
Selected Prevention Strategies

- Develop and update guidelines for all opioid prescribers
- Limit new opioid prescriptions for acute pain, with exceptions for certain patients
- Develop and adopt a comprehensive opioid management program in Medicaid and in other state-run programs
- Remove methadone for managing pain from Medicaid's preferred drug list

Selected Public Safety Strategies

Reducing supply of and demand for illicit opioids:

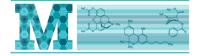
- Establish a collaborative information-sharing environment that breaks down silos across state agencies to better understand trends
- Use assets from partners to improve data collection and intelligence sharing to restrict the supply of illicit opioids
- Expand statutory tools for prosecuting major distributors
- Expand partnerships and data access to better target overprescribers



Selected Public Safety Strategies

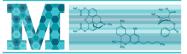
Responding to the crisis:

- Empower, educate, and equip law enforcement personnel to prevent overdose deaths and facilitate access to treatment
- Reinforce use of best practices in drug treatment courts
- Ensure access to MAT in correctional facilities and upon re-entry into the community
- Strengthen pre-trial drug diversion programs to give people the chance to enter substance use treatment



Hot Topics from States

- Establish a collaborative data and informationsharing environment
- Limit new opioid prescriptions for acute pain, with exceptions
- Expand use of non-opioid therapies for pain
- Increase access to naloxone
- Expand and strengthen the treatment and recovery workforce
- Increase access to MAT in corrections and with re-entry

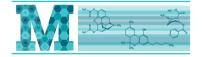


Drug-Monitoring Data and Information Sharing

Law enforcement	Health/human services
Specimen submissions for testing	EMS naloxone deployment data
Lab results (opioid and non-opioid pills, heroin, meth, cocaine, marijuana, bath salts)	Toxicology results on overdose deaths
Law enforcement naloxone deployments	Prescription monitoring programs
Thefts	Addiction treatment admissions
Shootings	Urinalysis results

Value of Real-Time Data

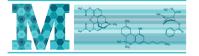
- States face a variety of data-related challenges, including:
 - Problems with data use agreements
 - Agency territory issues
 - Questions about personally identifiable information
 - Intergovernmental challenges
 - Privacy concerns
- States are facilitating data as quickly as they can for drug supply intelligence (e.g., stamps) and to push prevention and treatment resources toward overdose spikes



Potential Opportunities for Wastewater Testing

- May offer an additional layer for states to add to their data analysis
- A better picture of the epidemic, drug supply, and consumption patterns could help states guard against "squeezing the balloon"
- Previous studies exist on meth, MDMA, amphetamines, cocaine, heroin, methadone, and morphine in wastewater-based epidemiology in Nevada, Utah, South Carolina, Nebraska, and New York*

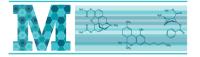
*European Monitoring Centre for Drugs and Drug Addiction, "Assessing Illicit Drugs in Wastewater," 2016.



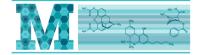
Questions and Challenges for Wastewater Testing

- States are focused on data (e.g., data to drive policy, data dashboards, DMI, etc.) to target limited resources
- Needs to help states target interventions proactively
- Will wastewater testing offer real-time estimates as a potential complementary tool?*
- Can it help alert LE to new substances and track changes in drug use over time?*

*European Monitoring Centre for Drugs and Drug Addiction, "Assessing Illicit Drugs in Wastewater," 2016.

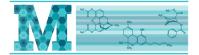


- What role does law enforcement have in working with wastewater treatment plants?
- What are the limitations in time frame analyses between drug use surveys and wastewater analysis?
- Challenges with financing—how can states afford to pilot programs or support this work?
- What types of conversations do state labs, wastewater plants, environmental quality agencies, and law enforcement need to have?



For More Information

- Jeffrey Locke, senior policy analyst
 - jlocke@nga.org
 - @jeffreyRlocke (Twitter)



The Potential of Wastewater Testing for Public Health

Panel Discussion

Jeffrey Locke National Governors Association

Capt. Juan Colon New Jersey State Police

Jeff Beeson High Intensity Drug Trafficking Area Program

Capt. Jen Fan Substance Abuse and Mental Health Services Administration

Drug Monitoring Initiative:

A Drug Intelligence Capability for Healthcare & Public Safety Partners

Wastewater Symposium Washington, DC

May 16, 2017

Captain Juan Colon – New Jersey State Police New Jersey Office of the Attorney General

DMI DATA SETS COLLECTED

•<u>Crimes</u>

•Drug Seizures/Lab results

- •Heroin
- •Pills
- Methamphetamine
- Cocaine
- •Marijuana Variants
- •Synthetics
- Shootings
- •Gun Recoveries
- •Drug Arrests
- •LE Narcan Deployments

Health/Human Services

EMS Narcan Deployment Data
Toxicology Data on Overdose Deaths
Prescription Drug Monitoring Program
Addiction Treatment Admissions

Children and Families DHS •Urinalysis results •Medicaid Data

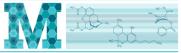
1	Count	Drug Name	Department Name	Offense Location	Offense Date	County
2	5	Buprenorphine	Elmwood Park PD	River Drive Elmwood Park	5/26/2013	BER
3	1	Buprenorphine	NJSP Tuckerton - Troop C	Us-9 Sb, M.P. 56, Bass River Twp.	6/22/2013	BUR
4	4	Buprenorphine	NJ Transit PD - Atlantic City	Camden Transportation Center	5/20/2013	CAM
5	6	Buprenorphine	Cherry Hill Twp PD	Rt 38 & Chapel Ave, Cherry Hill	6/11/2013	CAM
6	1	Buprenorphine	Cherry Hill Twp PD	Rt 38 & Hollywood Ave, Cherry Hill	6/16/2013	CAM
7	2	Buprenorphine	Haddon Heights PD	White Horse Pike	6/22/2013	CAM
8	1	Buprenorphine	Runnemede PD	525 North Oakland Ave. Runnemede	6/28/2013	CAM
9	1	Buprenorphine	Nutley PD	Parrellel St And Harrison St	5/15/2013	ESS
10	1	Buprenorphine	Monroe Twp PD (GLO)	1237 Janvier Rd	6/4/2013	GLO
11	6	Buprenorphine	Deptford Twp. PD	131 Blackwood Barnsboro Rd	6/13/2013	GLO
12	2	Buprenorphine	Harrison Twp PD	705 Mullica Hill Rd	7/7/2013	GLO
13	9	Buprenorphine	Edison Twp. PD	Maplewood Ave/Redfield Village	6/10/2013	MID
14	1	Buprenorphine	Howell Twp PD	Rt 9 / Aldrich Rd	6/28/2013	MON
15	2	Buprenorphine	Wall Twp PD	State Highway 138 Club Drive, Wall Twp	5/9/2013	MON
16	1	Buprenorphine	Tinton Falls PD	Ann Court	7/17/2013	MON
17	15	Buprenorphine	Matawan PD	Aberdeen Rd, Matawan Boro	7/8/2013	MON
18	2	Buprenorphine	Dover PD	91 Park Heights Avenue Apt 1C, Dover	6/17/2013	MOR
19	1	Buprenorphine	Wanaque Boro PD	Haskell Ave., Haskell	6/4/2013	PAS
20	1	Buprenorphine	Somerville PD	17 Reimer St Somerville	5/20/2013	SOM
21	8	Codeine	Pennsville PD	26 Harrison St Deepwater (Pennsville Twp)	4/24/2013	SAL
22	4	Codeine	Independence Twp PD	Russling Rd	5/9/2013	WAR
23	4	Hydrocodone	Winslow Twp PD	31 Colts Neck Drive Sicklerville	6/16/2013	CAM
24	5	Hydrocodone	Cumberland C P O/NARC	301 North 5Th St, Apartment 4, Millville	5/22/2013	CUM
25	5	Hydrocodone	Millville PD	Millville Senior High School Millville	4/9/2013	CUM
26	41	Hydrocodone	Essex C S O (E.C.B.N.)	394 Irvine Turner Blvd Newark	1/5/2011	ESS
27	6	Hydrocodone	Milltown PD	South Main St. Milltown	6/16/2013	MID

Forensic Crime Lab Drug Examination Results

 \mathbf{O}

04

	NJSP OFS Heroin Glassine Stamp Data											
	November 10, 2015											
Lab Case	Glassine count	Color	/ Stamp	Department Name	Offense Location	Offense	Count					
C15-06079 Heroin	1	RED	BRAINSTORM	NJSP Somerville	SH 24, MP 10 Springfield Twp	10/3/15	UNI					
C15-05902 Fentanyl	2	BLACK	EMPIRE	NJSP Bordentown	1324 East Yoppa St. Wrighstown	9/28/15	BUR					
C15-06026 Heroin	5	BLACK	PANDA (PANDA)	Trenton PD - CEB	Known	9/18/15	MER					
C15-06023	8	PURPLE	TEETH	Trenton PD - CEB	Swan St/Whittaker Ave	8/15/15	MER					
Heroin		Cocaine	Fentanyl									
C15-06034 Heroin	10	BLUE	THOR	Trenton PD - CEB	1677 Pek St	9/24/15	MER					
E15-06019 Heroin	3	RED	DOPE IMAGE OF LIT BOMI	Rutgers University PD	Lot 86 Rutgers University New Brunswick, NJ	10/14/15	MID					
E15-06067 Acetyl F	1 Centonul	GREEN	GAS FACE (SKULL WITH G	Asbury Park PD	City of Asbury Park	10/20/15	MON					
E15-05990 Acetyl F	6	BLUE	HOT 97	Middletown PD	194 Kag Dr. Middletown, NJ	10/9/15	MON					
E15-06159 heroin	10	RED	MIRACLE (STAR)	Monmouth County Prosecutor's Office - NTF	133 Hwy 35 Neptune City, NJ	10/23/15	MON					
E15-05990 Acetyl F	10 Fentanyl	BLACK	PICTURE OF DICE	Middletown PD	194 Kag Dr. Middletown, NJ	10/9/15	MON					
S15-08536 Heroin	1	GREEN	PREDATOR	Deptford Twp. PD	CLEMENTS BRIDGE ROAD	10/11/15	GLO					
E15-05990 Acetyl F	20 Fentanyl	PURPLE	THE FIXX	Middletown PD	194 Kag Dr. Middletown, NJ	10/9/15	MON					
E15-05990 Acetyl F	25	PURPLE	THE FIXX	Middletown PD	194 Kag Dr. Middletown, NJ	10/9/15	MON					
N15-08865	1	RED	151	NJSP Sussex	NJSP SUSSEX STATION	10/20/15	SUS					



The Potential of Wastewater Testing for Public Health and Safety

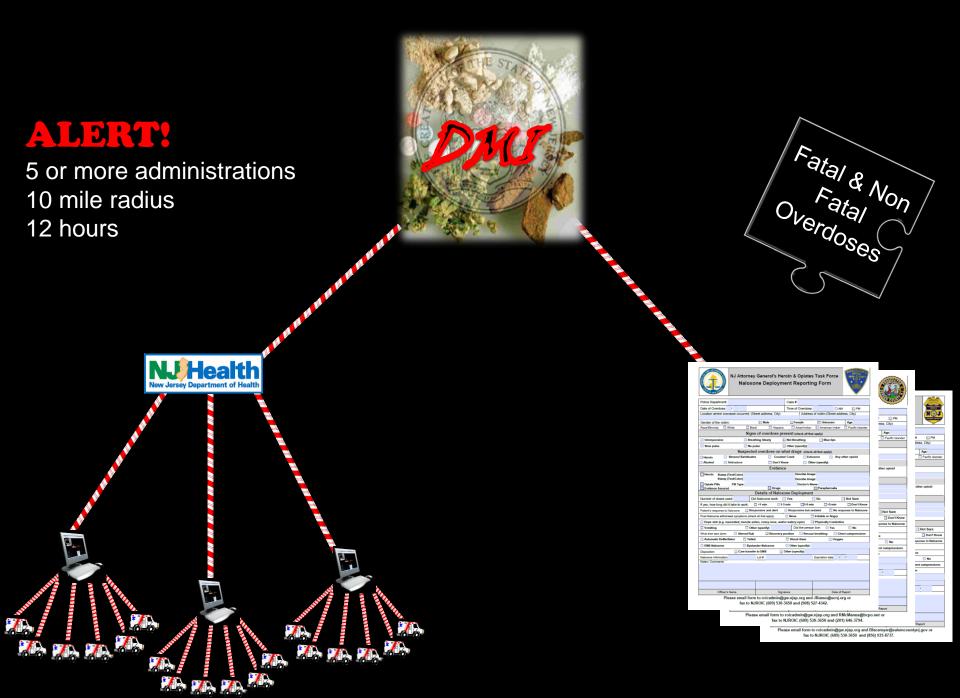
heroin

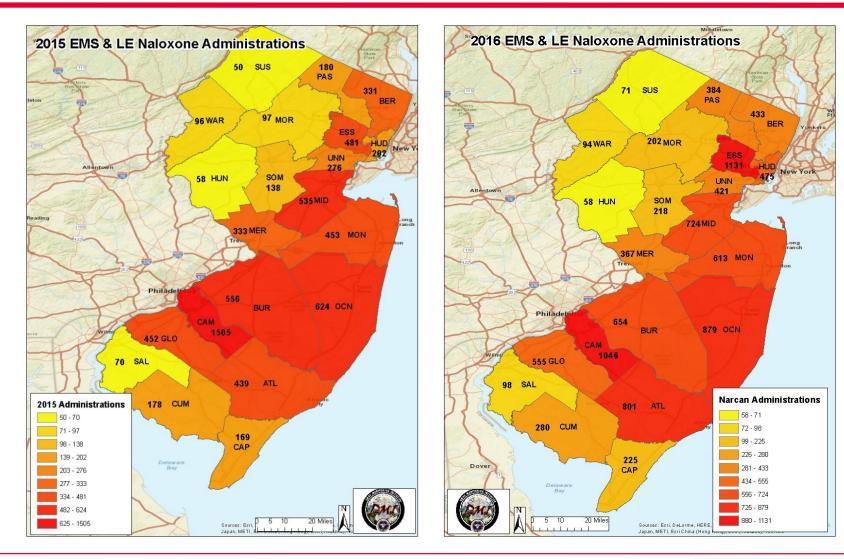
Medical Examiner's Toxicology Results - 2015

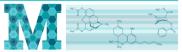
County	Age	Race	Gender	MOD	ALCOHOL	HEROIN	MORPHINE	COCAINE	FENTANYL	ACETYL FENTANYL	OXYCODONE	METHADONE	Body Found	City
Atlantic	27	Hispanic	Male	Accident		HEROIN		COCAINE	FENTANYL	ACETYL FENTANYL			Temporary	Atlantic City
Bergen	29	White	Male	Accident		HEROIN		COCAINE	FENTANYL	ACETYL FENTANYL			Residence	Hackensack
Bergen	25	White	Male	Accident		HEROIN			FENTANYL	ACETYL FENTANYL			Residence	Garfield
Bergen	48	White	Male	Accident					FENTANYL	ACETYL FENTANYL			Scene	Paramus
Bergen	23	White	Male	Accident		HEROIN			FENTANYL	ACETYL FENTANYL			Residence	UPPER Saddle River
Bergen	30	Hispanic	Male	Accident					FENTANYL	ACETYL FENTANYL	OXYCODONE		Residence	Franklin Lakes
Bergen	32	White	Male	Accident		HEROIN			FENTANYL	ACETYL FENTANYL			Residence	Fair Lawn
Essex	52	Black	Female	Accident		HEROIN			FENTANYL	ACETYL FENTANYL			Residence	Newark
Hudson	40	Black	Male	Accident		HEROIN		COCAINE	FENTANYL	ACETYL FENTANYL				Lincoln Park
Hudson	31	White	Male	Accident	ETHANOL	HEROIN			FENTANYL	ACETYL FENTANYL			Residence	Hoboken
Mercer	36	White	Male	Accident					FENTANYL	ACETYL FENTANYL			Residence	Trenton
Mercer	45	White	Male	Accident	ETHANOL	HEROIN		COCAINE	FENTANYL	ACETYL FENTANYL			Residence	LAWRENCEVILLE TOWNSHIP
Mercer	27	White	Female	Accident		HEROIN		COCAINE	FENTANYL	ACETYL FENTANYL			Residence	HAMILTON
Middlesex	49	White	Female	Accident	ETHANOL				FENTANYL	ACETYL FENTANYL		METHADONE	Residence	Metuchen
Middlesex	31	White	Male	Accident		HEROIN			FENTANYL	ACETYL FENTANYL			Residence	South Amboy
Middlesex	58	Black	Male	Accident		HEROIN			FENTANYL	ACETYL FENTANYL			Scene	North Brunswick Township
Middlesex	26	White	Female	Accident		HEROIN			FENTANYL	ACETYL FENTANYL			Scene	PORT READING (WOODBRIDG
Monmouth	28	White	Male	Accident		HEROIN			FENTANYL	ACETYL FENTANYL			Residence	Millstone
Morris	31	Asian	Male	Accident	ETHANOL	HEROIN			FENTANYL	ACETYL FENTANYL			Residence	ROXBURY
Morris	26	White	Male	Accident		HEROIN		COCAINE	FENTANYL	ACETYL FENTANYL			Public Area	Mt. Olive

 $The \, Potential \, of \, Wastewater \, Testing \, for \, Public \, Health \, and \, Safety$

1	2016 Adulterants Breakdo	own		\bigcap			
2	01/01/2016 - 12/31/2016			/			
3	Content	Fatal		OD		Seizure	Grand Total
14	Fentanyl		45		31	196	272
15	Fentanyl/Acetyl Fentanyl		3		2	5	10
16	Fentanyl/Caffeine/Acetaminophen/Diphenhydramine/Aminopyrene		1				1
17	Fentanyl/Furanyl Fentanyl		2				2
18	Fentanyl/Heroin/U-47700		1				1
19	Fentanyl/Ketamine/U-47700				1		1
20	Fentanyl/Para-Fluoroisobutyryl Fentanyl/Furanyl Fentanyl/Heroin		1				1
21	Fentanyl/Xylazine/Caffeine		1				1
22	Furanyl Fentanyl		26		9	99	134
23	Furanyl Fentanyl/Deschloroketamine					1	1
24	Furanyl Fentanyl/Deschloroketamine/Para-Fluoroisobutyryl Fentanyl					1	1
25	Furanyl Fentanyl/Fentanyl					1	1
26	Furanyl Fentanyl/Para-Fluoroisobutyryl Fentanyl		2			1	3
27	Furanyl Fentanyl/U-47700					1	1
28	Furanyl Fentanyl/U-47700/Valeryl Fentanyl					1	1
29	Furanyl Fentanyl/Valeryl Fentanyl/U-47700					5	5
30	Methocarbamol/Deschloroketamine/Para-Fluoroisobutyryl Fentanyl					1	1
31	Noscapine					8	8
32	Para-fluorobutyryl fentanyl					1	1
33	Para-fluorobutyryl Fentanyl/Furanyl Fentanyl/Heroin		1				1
34	Para-fluorobutyryl fentanyl/Heroin/Fentanyl		1		1		2
35	Para-Fluoroisobutyryl Fentanyl				1	11	13
36	Para-Fluoroisobutyryl Fentanyl/Deschloroketamine				2		2
37	Para-Fluoroisobutyryl Fentanyl/Deschloroketamine/Furanyl Fentanyl					1	1
38	Para-Fluoroisobutyryl Fentanyl/Furanyl Fentanyl		4		1		5
39	Paroxetine				1		1







The Potential of Wastewater Testing for Public Health and Safety

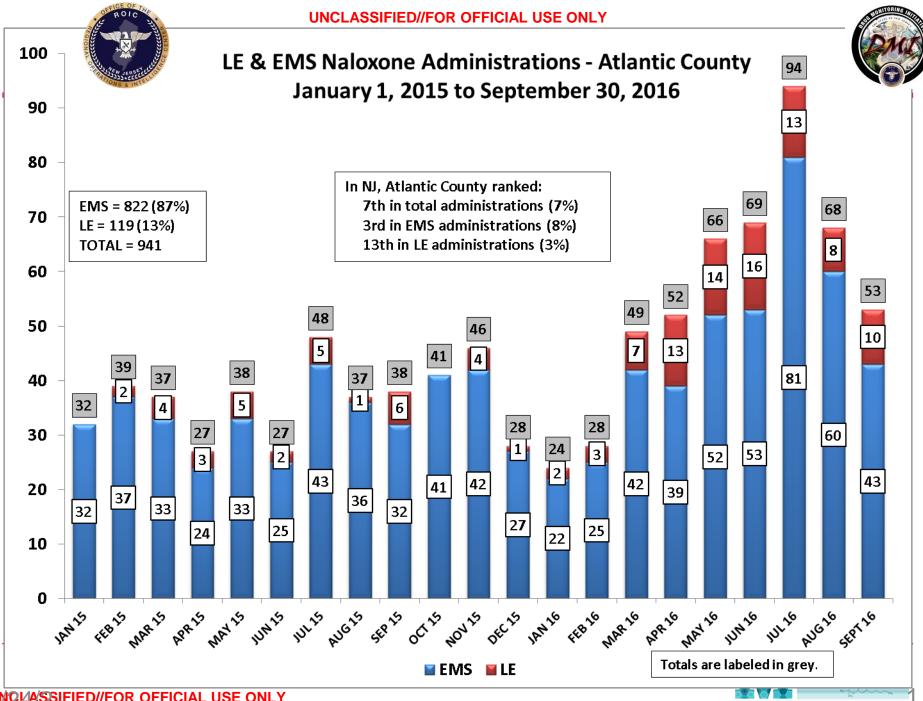
Naloxone Deployments By County 2015, 2016, 2017

Rank		2015 Total			2016 Total	l		2017 Total
1	Camden	1505		Essex	1131		Camden	58
2	Ocean	624		Camden	1046		Hudson	45
3	Burlington	556		Ocean	879	/	Middlesex	37
4	Middlesex	535		Atlantic	801		Burlington	33
5	Essex	481		Middlesex	724		Passaic	32
6	Monmouth	453		Burlington	654		Gloucester	27
7	Gloucester	452		Monmouth	613		Atlantic	26
8	Atlantic	439		Gloucester	555		Bergen	26
9	Mercer	333		Hudson	475		Union	24
10	Bergen	331		Bergen	433		Mercer	19
11	Union	276		Union	421		Morris	16
12	Hudson	202	1	Passaic	384	/ /	Ocean	13
13	Passaic	180		Mercer	367		Cumberland	12
14	Cumberland	178		Cumberland	280		Monmouth	9
15	Cape May	169		Cape May	225		Salem	9
16	Somerset	138		Somerset	218	/	Somerset	8
17	Morris	97	\longrightarrow	Morris	202		Sussex	7
18	Warren	96		Salem	98		Cape May	6
19	Salem	70		Warren	94		Essex	6
- 20	Hunterdon	58		Sussex	71		Hunterdon	4
21	Sussex	50		Hunterdon	<mark>58</mark>		Warren	2

NG NG NG

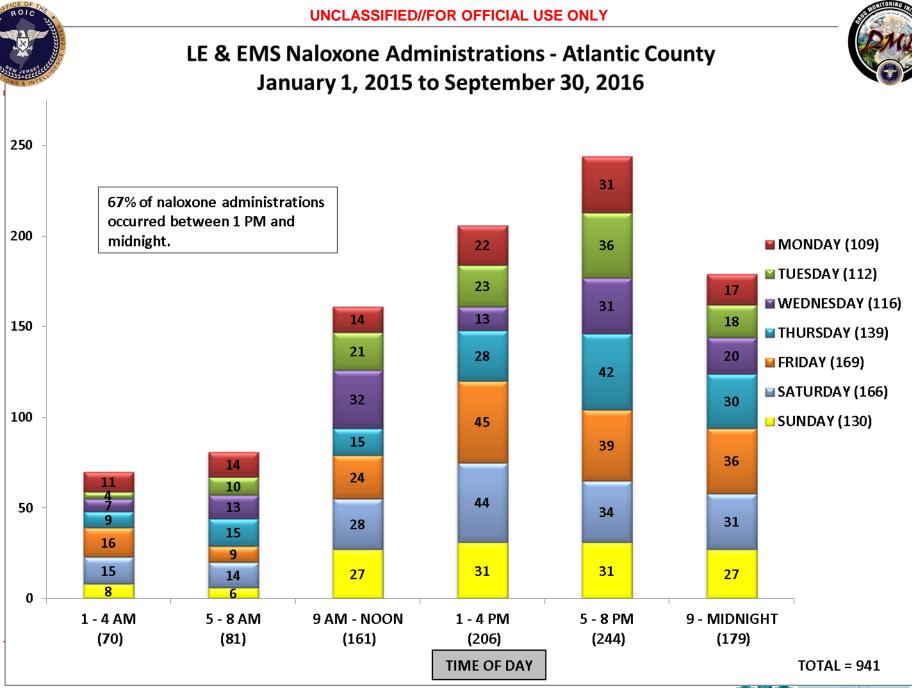
NONS & INTE	Opioid-Related Categories: 1/1/2015 to 6/30/2016										
Country	Suspected Heroin	Analyzed Heroin	Fentanyl	LE & EMS Naloxone	*Drug	Drug-Relat	ed Arrests				
County	Submissions	Glassine Bags	Submissions	Administrations	Deaths	Distribution	Possession				
Atlantic	1,128	75,430	91	715	85	1,151	1,523				
Bergen	752	29,782	63	537	85	1,686	3,847				
Burlington	686	7,449	59	770	87	864	2,168				
Camden	1,782	23,921	147	1,905	191	3,148	4,036				
Cape May	761	29,718	25	257	32	481	428				
Cumberland	176	6,371	7	262	38	614	1,232				
Essex	1,747	145,099	134	1,057	146	3,814	5,107				
Gloucester	Gloucester 244		44	643	65	865	2,061				
Hudson	825	25,563	14	434	107	2,264	2,238				
Hunterdon	167	4,852	13	85	14	214	324				
Mercer	928	68,669	33	464	59	1,388	2,060				
Middlesex	762	28,357	56	815	106	1,715	3,545				
Monmouth	1,437	74,048	129	793	122	1,820	3,353				
Morris	469	8,871	53	170	44	765	1,864				
Ocean	2,403	121,972	242	1,063	157	1,612	2,574				
Passaic	1,328	121,940	81	348	83	2,439	3,361				
Salem	46	1,049	3	103	18	193	403				
Somerset	212	19,547	28	252	35	263	936				
Sussex	236	5,415	29	80	25	241	576				
Union	1,395	46,073	94 462		67	1,487	3,418				
Warren	184	3,313	23 136		21	176	345				
Total	17,668	849,810	1,368	11,351	1,587	27,200	45,399				
*Source: New	Jersey Office of the	State Medical Exar	niner, 2015 Dr	ug Related Deaths.			Jan dia the				

	Opioid-Related Rankings: 1/1/2015 to 6/30/2016											
Country	Suspected Heroin	Analyzed Heroin	Fentanyl	LE & EMS Naloxone	*Drug	Drug-Relat	ed Arrests	Sum of	Final Rank			
County	Submissions	Glassine Bags	Submissions	Administrations	Deaths	Distribution	Possession	Categories				
Essex	3	1	3	3	3	1	1	15	1			
Camden	2	12	2	1	1	2	2	22	2			
Ocean	1	2	1	2	2	8	8	24	3			
Monmouth	4	5	4	5	4	5	7	34	4			
Passaic	6	3	7	13	10	3	6	48	5			
Middlesex	10	10	10	4	6	6	4	50	6			
Union	5	7	5	11	11	9	5	53	7			
Bergen	12	8	8	9	9	7	3	56	8			
Atlantic	7	4	6	7	8	11	14	57	9			
Hudson	9	11	18	12	5	4	9	68	10			
Mercer	8	6	13	10	13	10	12	72	11			
Burlington	13	15	9	6	7	13	10	73	12			
Gloucester	15	20	12	8	12	12	11	90	13			
Morris	14	14	11	17	14	14	13	97	14			
Cape May	11	9	16	15	17	16	18	102	15			
Somerset	17	13	15	16	16	17	16	110	16			
Cumberland	19	16	20	14	15	15	15	114	17			
Sussex	16	17	14	21	18	18	17	121	18			
Warren	18	19	17	18	19	21	20	132	19			
Hunterdon	20	18	19	20	21	19	21	138	20			
Salem	21	21	21	19	20	20	19	141	21			
*Source: Ne	w Jersey Office of th	ne State Medical Ex	kaminer, 2015	Drug Related Deaths.								



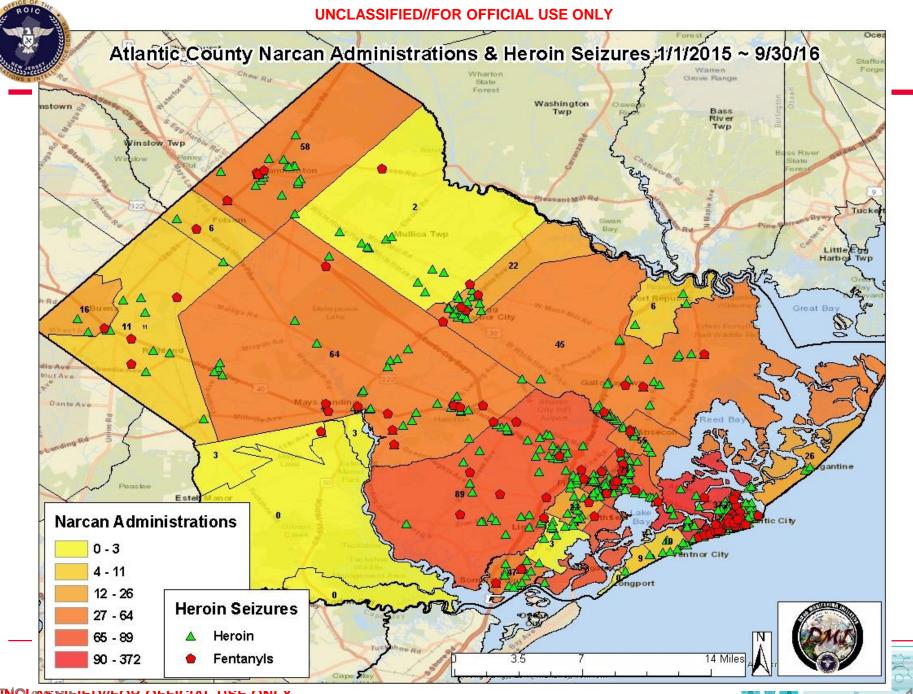
ENOLASSIFIED//FOR OFFICIAL USE ONLY

The Potential of Wastewater Testing for Public Health and Safety



UNOLASSIFIED//FOR OFFICIAL USE ONLY

The Potential of Wastewater Testing for Public Health and Safety 3



UNOLASSIFIED//FOR OFFICIAL USE ONLY

The Potential of Wastewater Testing for Public Health and Safety

Identification Of At-Risk Individuals

					Age At				DMI POM	Naloxone	Total Drug	Theft	Drug	E
Last	Name 👻	First Name 🗸	N-	DOB	- Last Arrest -	Sex 🗸	Raciv		Score 👻	Administratior -	& Theft Arrest -	Arrests	Arrests	& [
			J		23	MALE	W	:	41	2	22	9	7	
			L		55	MALE	В		36	0	26	16	4	
			Ε		21	MALE	W		35	0	18	1	16	
	N		J	1	. 24	MALE	W		34	1	19	7	9	
			R		56	MALE	В		33	1	26	22	2	
			•		30	MALE	W		33	0	24	15	1	
			J		27	MALE	W	•	33	1	18	6	9	
			J		42	MALE	В		32	0	24	16	3	
			C		39	MALE	В		31	1	16	4	7	
			L		26	FEMALE	W		31	1	14	0	13	0
	2		L		33	MALE	В		29	0	21	13	5	
	·		G		27	MALE	В		29	0	18	7	7	
			A		26	MALE	W		29	1	17	8	9	
			P		25	MALE	W		29	1	16	6	5	
			С		29	MALE	В		29	1	16	6	7	
			۷		23 27	MALE	В		29	1	14	2	12	
			۷		27	MALE	W		28	0	19	10	7	
			R		22	FEMALE	W		28	0	17	6	10	
	E		R		22 50 47	MALE	W		28	0	16	4	5	
			•		47	MALE	В		28	0	15	2	11	
	(Μ		21	MALE	W		28	0	15	2	12	
			R		31	MALE	W		28	1	13	1	12	
					53	MALE	R		27	1	15	6	8	

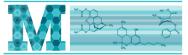
For More Information

- Captain Juan Colon
 - LPP5039@GW.NJSP.ORG
 - -609-498-5885

VIII. Using advanced analytics to enhance decision making

Ravi Goyal

Mathematica Policy Research



The Potential of Wastewater Testing for Public Health and Safety

Using Advanced Analytics to Enhance Decision Making

Wastewater Symposium Washington, DC

May 16, 2017

Ravi Goyal • Sarah LeBarron • Jonathan Geller • Jiaqi Li • Ellen Bouchery • Aparna Keshaviah

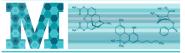
- The opioid epidemic is a complex problem requiring a multifaceted, collaborative approach by agencies, including those in public health and law enforcement^{1, 2}
- Collaborative, data-driven efforts should become standard practice in developing, assessing, and adjusting policies and programming²
- Techniques to conduct analytics have greatly advanced in the past several years

- 1. Rudd, Rose A. "Increases in Drug and Opioid-Involved Overdose Deaths—United States, 2010–2015." *Morbidity and Mortality Weekly Report*, vol. 65, 2016.
- 2. Massachusetts Department of Public Health. "An Assessment of Opioid-Related Deaths in Massachusetts." 2016.



Objectives

- Investigate what can be learned about the opioid epidemic in Massachusetts (MA) by combining multiple data sets aggregated at the city/town level
 - Wastewater will most likely be collected at centralized locations, such as treatment facilities
 - Wastewater data will most likely be combined with data at a regional/community level because linkage to individual-level data will be challenging
- Compare our findings with those conducted by linking dataset at the individual-level



Study

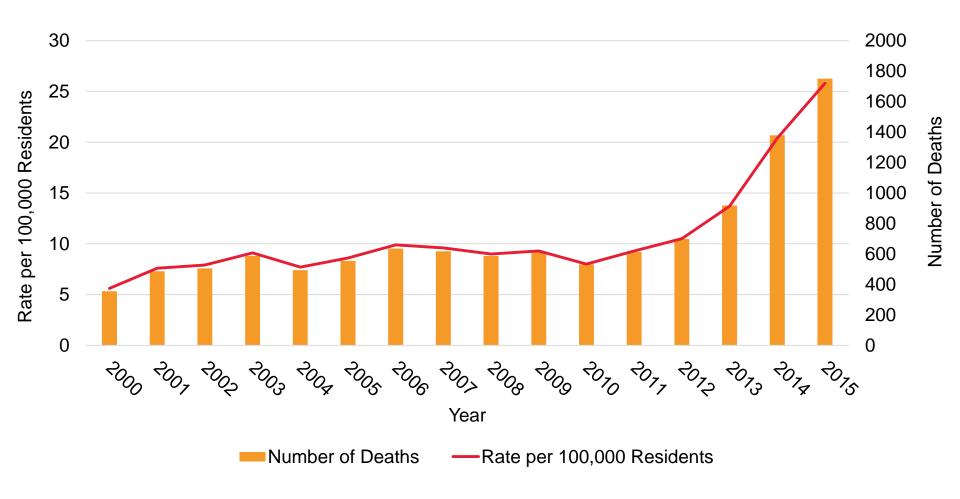
• Main

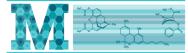
 Predict opioid-related fatality rates (deaths per 100,000 residents) for each city or town in MA based on data from previous years

Secondary

- Identify data sets from federal and state agencies that provide information on the epidemic
- Identify appropriate analytical methods

MA Opioid-Related Overdose Deaths

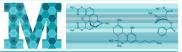




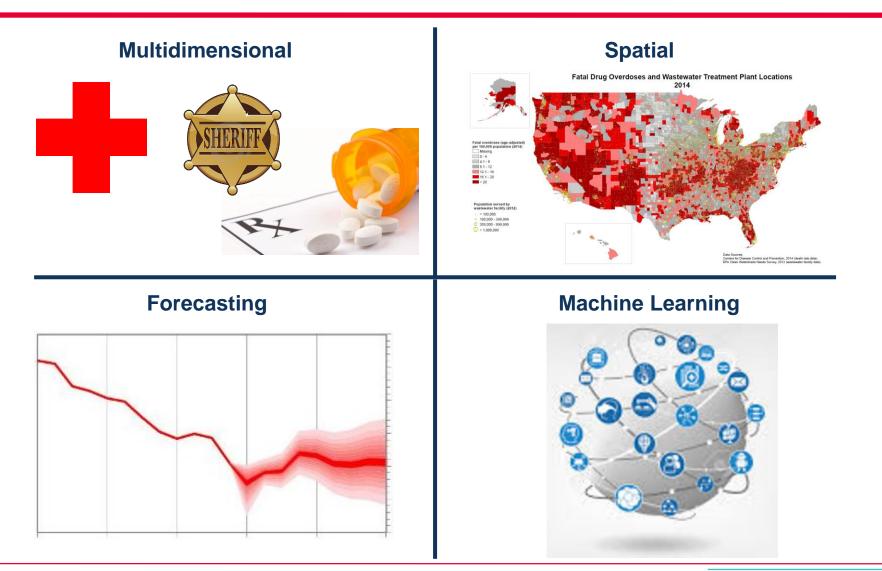
The Potential of Wastewater Testing for Public Health and Safet

MA Information

- Population: 6.8 million
- Number of counties: 14
- Number of cities and towns: 351
 - Smallest: Gosnold—77 (2015 est.)
 - Largest: Boston-667,137 (2015 est.)



Analytic Components

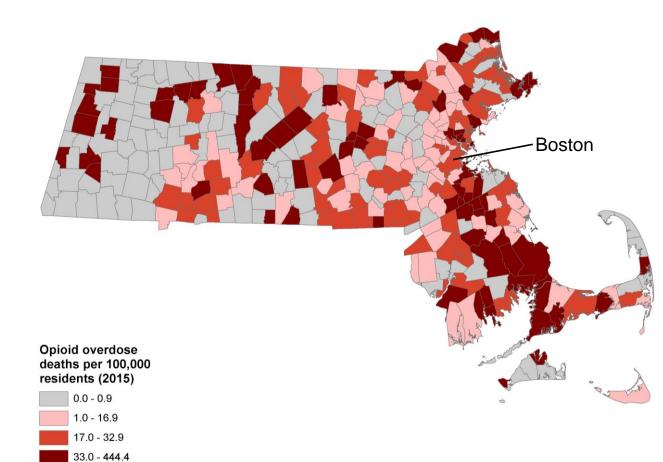


The Potential of Wastewater Testing for Public Health and Safety

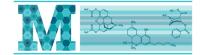
Multidimensional

Domain	Source	Variables
Outcome	MA DPH	 Number of opioid overdose deaths (per 100,000 residents)
Demographics	MA State Data Center 2015 American Community Survey five- year estimates	 Population per city/town in MA Median age Percent male residents Percent white residents Percent uninsured Percent unemployed Median income Percent disabled Percent who have public health insurance
Prescriptions	MA Prescription Monitoring Program	 Number of opioid prescriptions Percent of people with a class II opioid prescription Percent of people with activity of concern (shop around)
Treatment for addiction Law enforcement	MA Bureau of Substance Abuse Services National Incident-Based Reporting System	 Percent of drug treatment admissions with opioids as the primary drug Number of drug-related offenses Number of crimes against society
Spatial	MA Office of Geographic Information	LatitudeLongitude

Spatial



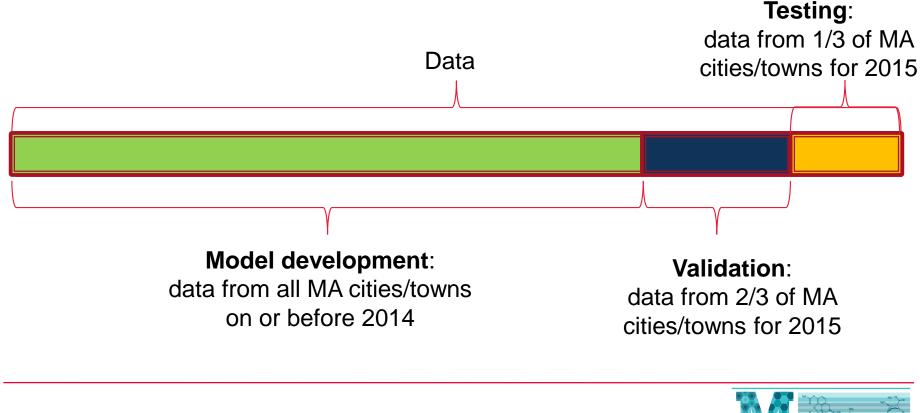
- Latitude and longitude
- Distance from Boston
- Average death rate in contiguous cities/towns



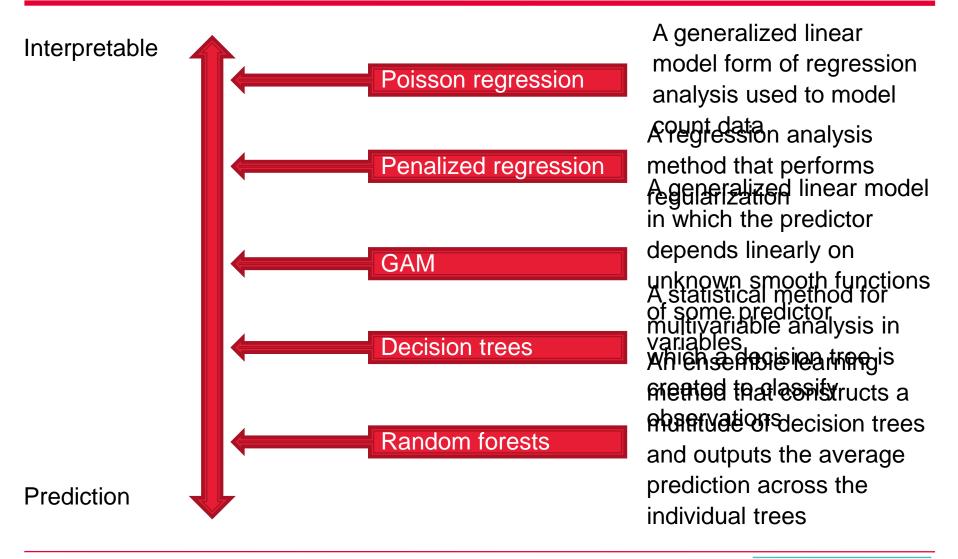
The Potential of Wastewater Testing for Public Health and Safety

Predictive Analytics

In predictive analytics, it is critical to develop a framework that will enable an accurate assessment of the predictive power of the model; this assessment differs from traditional statistical methods because prediction aims to extrapolate results to a future population.

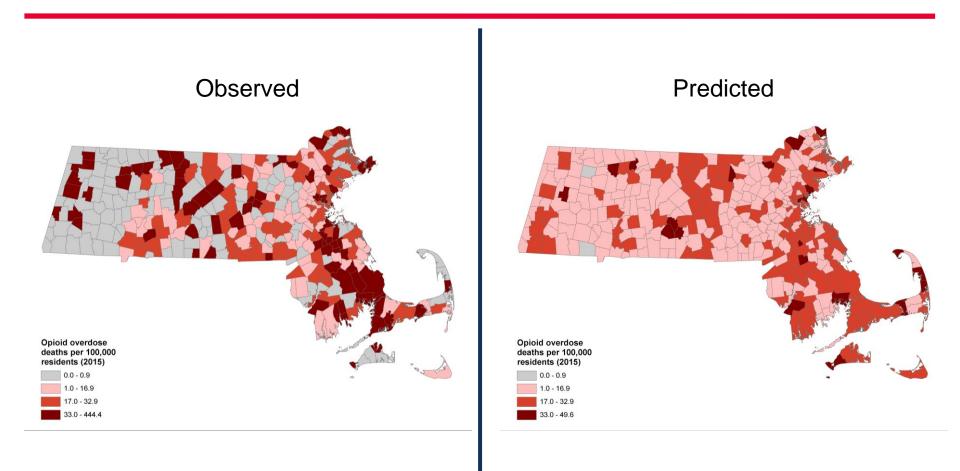


Machine Learning

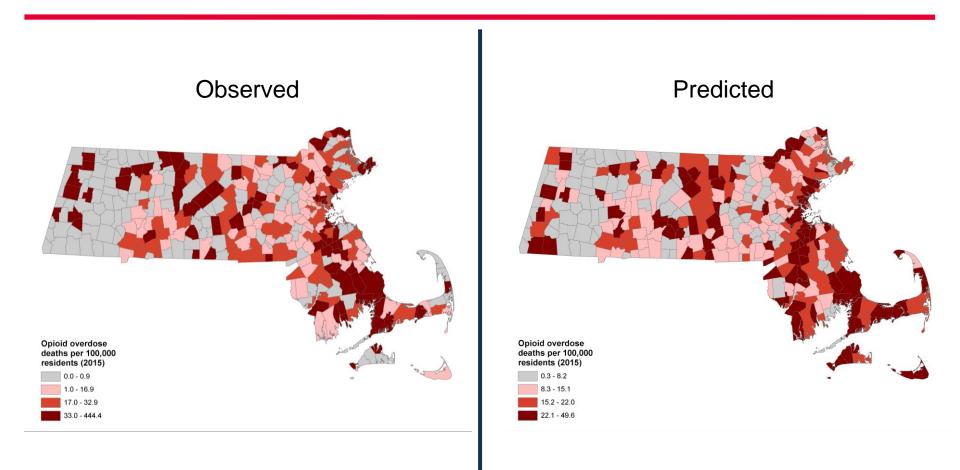


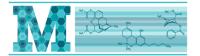
ial of Wastewater Testing for Public H

Results (same scale)



Results (data-specific scale)

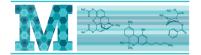




Findings

Aggregate-level predictions

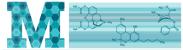
- May have potential to predict broad ranking of a city/town based on overdose death rate (e.g., if death rate is among top 25% across MA)
- Most of the predictive power was derived from the opioid-related fatality rate of the previous year
- Aggregated statistics on demographics, prescriptions, treatment, and drug-related crimes was only weakly correlated with death rates
- Challenges arise for towns with small populations



Finding from MA DPH analysis

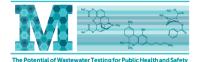
Individual-level associations

- People who died from opioid-related overdoses are much more likely to have an illegally obtained substance present in post-mortem toxicology
- People on opioid agonist treatments after a nonfatal overdose are significantly less likely to die
- Women are significantly more likely than men to receive opioids from 3+ prescribers and to fill them at 3+ pharmacies
- Risk of opioid overdose death after incarceration is 56x higher than for the general public



Discussion

- Value of wastewater on prediction
 - Real-time data
- Integrating wastewater data with existing data
 - Aggregate vs. individual-level analysis
 - Not always perfectly aligned with county or town borders



For More Information

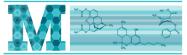
- Ravi Goyal, Ph.D.
 - rgoyal@mathematica-mpr.com

Panel Discussion

Ravi Goyal Mathematica Policy Research

Jaya Tripathi The MITRE Corporation

Scott Cody Project Evident



Using Advanced Analytics to Identify and Reduce Prescription Drug Fraud and Abuse

Wastewater Symposium Washington, DC

May 16, 2017

Jaya Tripathi jtripathi@mitre.org

For Limited Release to attendees of Mathematica's Symposium on the Potential of Wastewater Testing for Public Health and Safety © 2017 The MITRE Corporation

Multi-pronged Approach to Mining your Data

exploration

- histograms, PCA, t-SNE, clustering, visualizations, other statistical analyses

transformation

- timeline summaries, feature engineering

geo-spatial analytics

- 'hot spots', correlation studies using other datasets

graph analytics

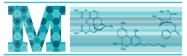
- tripartite graphs, connectivity, entropy and motifs

machine learning

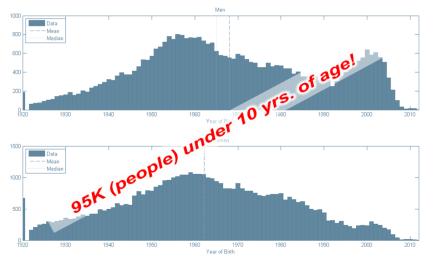
- predictive models, 'ground truth', validation

The Potential of Wastewater Testing for Public Health and Safety

some examples of applications of the techniques ...

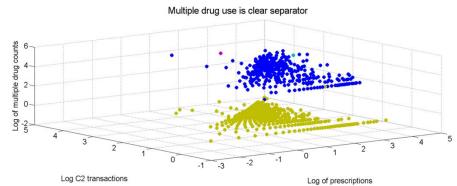


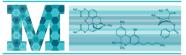
Exploration



Age Gender Histogram

3D Scatter Plot

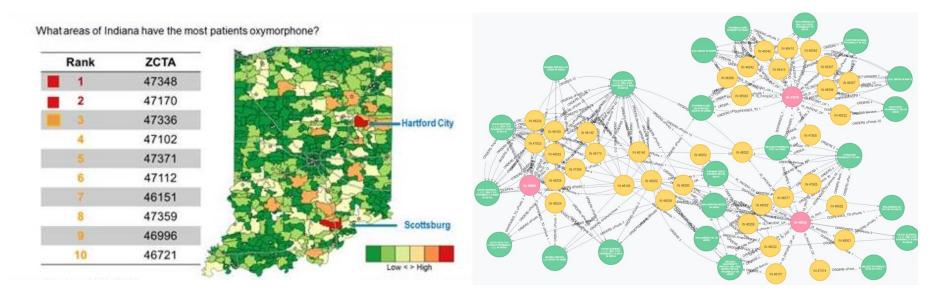


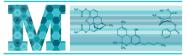


Geo-Spatial and Graph Analytics

Heat Map

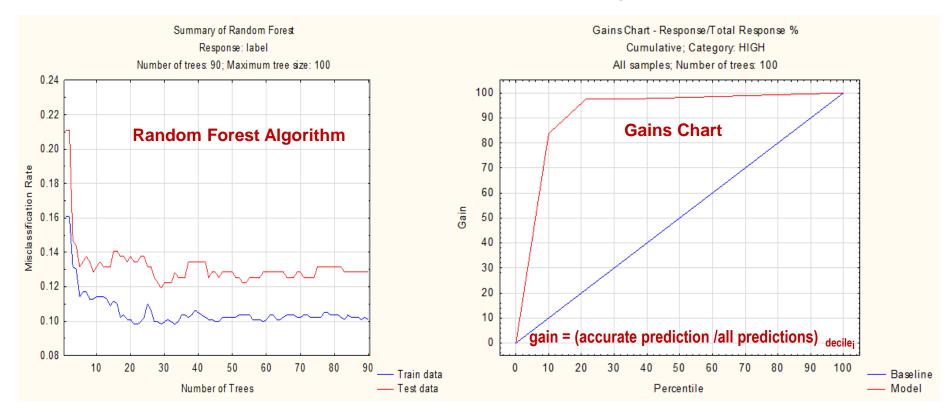
Doctor Shopping networks



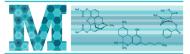


Risk Scoring with Classification Systems

Engaged human experts for 'ground truth' Employed Supervised Machine Learning Models



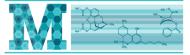
For Limited Release to attendees of Mathematica's Symposium on the Potential of Wastewater Testing for Public Health and Safety © 2017 The MITRE Corporation 159



IX. Steps to advance wastewater testing for decision making

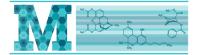
Craig Thornton Mathematica Policy Research

Jon Glaudemans United Rheumatology



If given \$100 to invest in any of the four critical pathways below, how much would you invest in each?

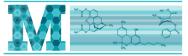
- A) Testing methods
- B) Proof-of-concept pilot studies
- C) Data/metric integration
- D) Leadership and collaboration



X. Closing remarks and synthesis

Aparna Keshaviah

Mathematica Policy Research



Closing Remarks & Synthesis

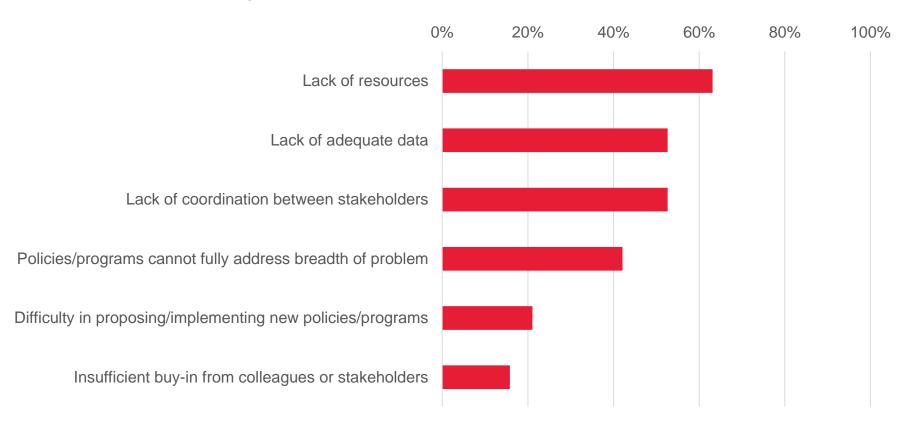
Wastewater Symposium Washington, DC

May 16, 2017

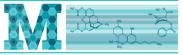
Aparna Keshaviah, Sc.M.

Critical Needs (per participant survey)

What are your top 3 critical needs or challenges in your day-to-day work addressing the opioid crisis and other substance abuse issues?*



*Based on 19 participants who answered this question in the participant survey



Possible Futures

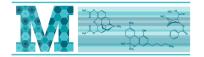
Short- and Mid-term

- Cost-benefit analysis
- Pilot studies
 - Applications
 - Participating communities
 - Funding sources
- Collaborative research groups

Long-term

- Coordinating center (cross-agency)
- Standardized procedures (protocols, central testing labs, etc.)
- Data warehouse (multi-drug)
- Monitoring system (large-scale)

- Special report forthcoming -



For more information

- Jennifer de Vallance
 - JdeVallance@mathematica-mpr.com
- Aparna Keshaviah
 - <u>AKeshaviah@mathematica-mpr.com</u>

